Feature Analysis, Tracking, and Data Reduction: An Application to Multiphase Reactor Simulation MFiX-Exa for In-Situ Use Case

被引:4
作者
Biswas, Ayan [1 ]
Ahrens, James P. [1 ]
Dutta, Soumya [2 ]
Musser, Jordan M. [3 ]
Almgren, Ann S. [4 ]
Turton, Terece L. [5 ]
机构
[1] Los Alamos Natl Lab, Data Sci Grp CCS 7, Los Alamos, NM 87544 USA
[2] Los Alamos Natl Lab, Data Sci, Scale Team, Los Alamos, NM 87544 USA
[3] Natl Energy Technol Lab, Morgantown, WV 26507 USA
[4] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[5] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
关键词
Data handling - Carbon dioxide;
D O I
10.1109/MCSE.2020.3016927
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As we enter the exascale computing regime, powerful supercomputers continue to produce much higher amounts of data than what can be stored for offline data processing. To utilize such high compute capabilities on these machines, much of the data processing needs to happen in situ, when the full high-resolution data is available at the supercomputer memory. In this article, we discuss our MFiX-Exa simulation, which models multiphase flow by tracking a very large number of particles through the simulation domain. In one of the use cases, the carbon particles interact with air to produce carbon dioxide bubbles from the reactor. These bubbles are of primary interest to the domain experts for these simulations. For this particle-based simulation, we propose a streaming technique that can be deployed in situ to efficiently identify the bubbles, track them over time, and use them to down-sample the data with minimal loss in these features.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 12 条
[1]   Parallel Tensor Compression for Large-Scale Scientific Data [J].
Austin, Woody ;
Ballard, Grey ;
Kolda, Tamara G. .
2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2016), 2016, :912-922
[2]   In Situ Data-Driven Adaptive Sampling for Large-scale Simulation Data Summarization [J].
Biswas, Ayan ;
Dutta, Soumya ;
Pulido, Jesus ;
Ahrens, James .
PROCEEDINGS OF IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION (ISAV 2018), 2018, :13-18
[3]  
Duque EPN, 2012, 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), P1593, DOI 10.1109/SC.Companion.2012.335
[4]   In Situ Distribution Guided Analysis and Visualization of Transonic Jet Engine Simulations [J].
Dutta, Soumya ;
Chen, Chun-Ming ;
Heinlein, Gregory ;
Shen, Han-Wei ;
Chen, Jen-Ping .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) :811-820
[5]   Data Reduction Techniques for Simulation, Visualization and Data Analysis [J].
Li, S. ;
Marsaglia, N. ;
Garth, C. ;
Woodring, J. ;
Clyne, J. ;
Childs, H. .
COMPUTER GRAPHICS FORUM, 2018, 37 (06) :422-447
[6]   Fixed-Rate Compressed Floating-Point Arrays [J].
Lindstrom, Peter .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) :2674-2683
[7]   Interactive Feature Extraction and Tracking By Utilizing Region Coherency [J].
Muelder, Chris ;
Ma, Kwan-Liu .
IEEE PACIFIC VISUALIZATION SYMPOSIUM 2009, PROCEEDINGS, 2009, :17-24
[8]   Validation of a discrete element model using magnetic resonance measurements [J].
Mueller, Christoph R. ;
Scott, Stuart A. ;
Holland, Daniel J. ;
Clarke, Belinda C. ;
Sederman, Andrew J. ;
Dennis, John S. ;
Gladden, Lynn F. .
PARTICUOLOGY, 2009, 7 (04) :297-306
[9]   The state of the art in flow visualisation: Feature extraction and tracking [J].
Post, FH ;
Vrolijk, B ;
Hauser, H ;
Laramee, RS ;
Doleisch, H .
COMPUTER GRAPHICS FORUM, 2003, 22 (04) :775-792
[10]   VISUALIZING FEATURES AND TRACKING THEIR EVOLUTION [J].
SAMTANEY, R ;
SILVER, D ;
ZABUSKY, N ;
CAO, J .
COMPUTER, 1994, 27 (07) :20-27