Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase

被引:176
作者
Hallows, KR
Raghuram, V
Kemp, BE
Witters, LA
Foskett, JK
机构
[1] Univ Penn, Sch Med, Dept Physiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Inst Human Gene Therapy, Philadelphia, PA 19104 USA
[3] Univ Penn, Sch Med, Dept Med, Renal Electrolyte & Hypertens Div, Philadelphia, PA 19104 USA
[4] St Vincents Inst Med Res, Fitzroy, Vic 3065, Australia
[5] Dartmouth Coll, Hitchcock Med Ctr, Dartmouth Med Sch, Dept Med,Div Endocrinol Diabet & Metab, Hanover, NH 03756 USA
[6] Dartmouth Coll, Hitchcock Med Ctr, Dartmouth Med Sch, Dept Biochem,Div Endocrinol Diabet & Metab, Hanover, NH 03756 USA
关键词
D O I
10.1172/JCI9622
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated Cl- channel that regulates other epithelial transport proteins by uncharacterized mechanisms. We employed a yeast two-hybrid screen using the COOH-terminal 70 residues of CFTR to identify proteins that might be involved in such interactions. The alpha 1 (catalytic) subunit of AMP-activated protein kinase (AMPK) was identified as a dominant and novel interacting protein. The interaction is mediated by residues 1420-1457 in CFTR and by the COOH-terminal regulatory domain of alpha 1-AMPK. Mutations of two protein trafficking motifs within the 38-amino acid region in CFTR each disrupted the interaction. GST-fusion protein pull-down assays in vitro and in transfected cells confirmed the CFTR-alpha 1-AMPK interaction and also identified alpha 2-AMPK as an interactor with CFTR AMPK is coexpressed in CFTR-expressing cell lines and shares an apical distribution with CFTR in rat nasal epithelium. AMPK phosphorylated full-length CFTR in vitro, and AMPK coexpression with CFTR in Xenopus oocytes inhibited cAMP-activated CFTR whole-cell Cl- conductance by approximately 35-50%. Because AMPK is a metabolic sensor in cells and responds to changes in cellular ATP, regulation of CFTR by AMPK may be important in inhibiting CFTR under conditions of metabolic stress, thereby linking transepithelial transport to cell metabolic state.
引用
收藏
页码:1711 / 1721
页数:11
相关论文
共 54 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] CHLORIDE CHANNELS IN THE APICAL MEMBRANE OF NORMAL AND CYSTIC-FIBROSIS AIRWAY AND INTESTINAL EPITHELIA
    ANDERSON, MP
    SHEPPARD, DN
    BERGER, HA
    WELSH, MJ
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 263 (01): : L1 - L14
  • [3] ROLE OF MEMBRANE TRAFFICKING IN PLASMA-MEMBRANE SOLUTE TRANSPORT
    BRADBURY, NA
    BRIDGES, RJ
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (01): : C1 - C24
  • [4] ATP depletion induces a loss of respiratory epithelium functional integrity and down-regulates CFTR (cystic fibrosis transmembrane conductance regulator) expression
    Brezillon, S
    Zahn, JM
    Pierrot, D
    Gaillard, D
    Hinnrasky, J
    Millart, H
    Klossek, JM
    Tummler, B
    Puchelle, E
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) : 27830 - 27838
  • [5] PURIFICATION AND CHARACTERIZATION OF THE AMP-ACTIVATED PROTEIN-KINASE - COPURIFICATION OF ACETYL-COA CARBOXYLASE KINASE AND 3-HYDROXY-3-METHYLGLUTARYL-COA REDUCTASE KINASE-ACTIVITIES
    CARLING, D
    CLARKE, PR
    ZAMMIT, VA
    HARDIE, DG
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 186 (1-2): : 129 - 136
  • [6] THE 2 NUCLEOTIDE-BINDING DOMAINS OF CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) HAVE DISTINCT FUNCTIONS IN CONTROLLING CHANNEL ACTIVITY
    CARSON, MR
    TRAVIS, SM
    WELSH, MJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) : 1711 - 1717
  • [7] AMP-activated protein kinase phosphorylation of endothelial NO synthase
    Chen, ZP
    Mitchelhill, KI
    Michell, BJ
    Stapleton, D
    Rodriguez-Crespo, I
    Witters, LA
    Power, DA
    de Montellano, PRO
    Kemp, BE
    [J]. FEBS LETTERS, 1999, 443 (03) : 285 - 289
  • [8] DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS
    CHENG, SH
    GREGORY, RJ
    MARSHALL, J
    PAUL, S
    SOUZA, DW
    WHITE, GA
    ORIORDAN, CR
    SMITH, AE
    [J]. CELL, 1990, 63 (04) : 827 - 834
  • [9] PHOSPHORYLATION OF THE R-DOMAIN BY CAMP-DEPENDENT PROTEIN-KINASE REGULATES THE CFTR CHLORIDE CHANNEL
    CHENG, SH
    RICH, DP
    MARSHALL, J
    GREGORY, RJ
    WELSH, MJ
    SMITH, AE
    [J]. CELL, 1991, 66 (05) : 1027 - 1036
  • [10] 5-AMINOIMIDAZOLE-4-CARBOXAMIDE RIBONUCLEOSIDE - A SPECIFIC METHOD FOR ACTIVATING AMP-ACTIVATED PROTEIN-KINASE IN INTACT-CELLS
    CORTON, JM
    GILLESPIE, JG
    HAWLEY, SA
    HARDIE, DG
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 229 (02): : 558 - 565