In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials

被引:51
作者
Zhao, Tingkai [1 ]
She, Shengfei [1 ,2 ]
Ji, Xianglin [1 ]
Jin, Wenbo [1 ]
Dang, Alei [1 ]
Li, Hao [1 ]
Li, Tiehu [1 ]
Shang, Songmin [3 ]
Zhou, Zhongfu [4 ]
机构
[1] Northwestern Polytech Univ, Shaanxi Engn Lab Graphene New Carbon Mat & Applic, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
[3] Hong Kong Polytech Univ, Inst Text & Clothing, Kowloon, Hong Kong, Peoples R China
[4] Aberystwyth Univ, Dept Phys, Aberystwyth SY23 3FL, Dyfed, Wales
关键词
Amorphous carbon nanotubes; Silicon core-shell composite; Chemical vapor deposition; X-ray diffraction; Electron microscopy; Electrochemical properties; NANOSTRUCTURED MATERIALS; ENERGY-CONVERSION; COMPOSITE ANODE; GRAPHENE; PERFORMANCE; NANOCOMPOSITE; NANOPARTICLES;
D O I
10.1016/j.jallcom.2017.03.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel silicon core/amorphous carbon nanotube (ACNT) shell composite that can be used as lithium-ion batteries anode material was in-situ synthesized in the chemical vapor deposition (CVD) growth process. The hypothesized core/shell structure was evidenced by SEM/TEM/XRD, suggesting that the ACNTs composed of carbon clusters with short-range order and long-range disorder were successfully deposited onto the surface of the silicon particles. This Si/ACNT composite delivered a high capacity of 1496 mAh g(-1) at a current density of 100 mA g(-1), and a superior cycling stability with 80% capacity retention after 300 cycles. This observed specific capacity improvement of Si/ACNT composite is likely attributed to the formed three-dimensional conductive networks between silicon particles and interwoven ACNTs in the composite. (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:500 / 507
页数:8
相关论文
共 36 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries [J].
Chou, Shu-Lei ;
Zhao, Yue ;
Wang, Jia-Zhao ;
Chen, Zhi-Xin ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (37) :15862-15867
[4]   The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies [J].
Esconjauregui, Santiago ;
Whelan, Caroline M. ;
Maex, Karen .
CARBON, 2009, 47 (03) :659-669
[5]   Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries [J].
Evanoff, Kara ;
Magasinski, Alexandre ;
Yang, Junbing ;
Yushin, Gleb .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :495-498
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]  
Franklin NR, 2000, ADV MATER, V12, P890, DOI 10.1002/1521-4095(200006)12:12<890::AID-ADMA890>3.0.CO
[8]  
2-K
[9]   A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries [J].
Gan, Lei ;
Guo, Huajun ;
Wang, Zhixing ;
Li, Xinhai ;
Peng, Wenjie ;
Wang, Jiexi ;
Huang, Silin ;
Su, Mingru .
ELECTROCHIMICA ACTA, 2013, 104 :117-123
[10]   Direct scattered growth of MWNT on Si for high performance anode material in Li-ion batteries [J].
Gao, Pengfei ;
Nuli, Yanna ;
He, Yu-Shi ;
Wang, Jiazhao ;
Minett, Andrew I. ;
Yang, Jun ;
Chen, Jun .
CHEMICAL COMMUNICATIONS, 2010, 46 (48) :9149-9151