Leading coefficients of Kazhdan-Lusztig polynomials and fully commutative elements

被引:6
作者
Green, R. M. [1 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
关键词
Kazhdan-Lusztig polynomials; Affine Weyl groups; Fully commutative elements; 0-1; conjecture; COXETER GROUPS; REPRESENTATIONS; ALGEBRAS; FINITE;
D O I
10.1007/s10801-008-0156-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be a Coxeter group of type (A) over tilde (n-1). We show that the leading coefficient, mu(x, w), of the Kazhdan-Lusztig polynomial P-x,P-w is always equal to 0 or 1 if x is fully commutative (and w is arbitrary).
引用
收藏
页码:165 / 171
页数:7
相关论文
共 15 条
[1]   On the affine Temperley-Lieb algebras [J].
Fan, CK ;
Green, RM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :366-380
[2]  
Humphreys J. E., 1990, REFLECTION GROUPS CO
[3]  
JONES BC, J ALGEBR CO IN PRESS
[4]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[5]  
Kazhdan David, 1980, P S PURE MATH, VXXXVI, P185
[6]  
LASCOUX A, 1981, ASTERISQUE, P249
[7]  
LASCOUX A, 1995, CR ACAD SCI I-MATH, V321, P667
[8]   SOME EXAMPLES OF SQUARE INTEGRABLE REPRESENTATIONS OF SEMISIMPLE P-ADIC GROUPS [J].
LUSZTIG, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (02) :623-653
[9]  
LUSZTIG G, 1980, P SYMP PURE MATH, V37, P313
[10]  
Lusztig George, 1985, Adv. Stud. Pure Math., V6, P255