NO-REFERENCE IMAGE QUALITY ASSESSMENT OF T2-WEIGHTED MAGNETIC RESONANCE IMAGES IN PROSTATE CANCER PATIENTS

被引:9
|
作者
Masoudi, Samira [1 ]
Harmon, Stephanie [1 ]
Mehralivand, Sherif [1 ]
Lay, Nathan [1 ]
Bagci, Ulas [2 ]
Wood, Bradford J. [1 ]
Pinto, Peter A. [1 ]
Choyke, Peter [1 ]
Turkbey, Baris [1 ]
机构
[1] NCI, NIH, Bethesda, MD 20892 USA
[2] Northwestern Univ, Dept Radiol, Chicago, IL 60611 USA
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
基金
美国国家卫生研究院;
关键词
no-reference image quality assessment; magnetic resonance imaging; generative adversarial network;
D O I
10.1109/ISBI48211.2021.9434027
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
No-reference image quality assessment in magnetic resonance (MR) imaging is a challenging task due to the variable nature of these images and lack of standard quantification methods, which makes the interpretation to be almost always subjective. In this study, we propose an architecture where we: (i) extended the no-reference image quality assessment problem of MRI into a full-reference image quality assessment using unpaired generative adversarial network (GAN) and (ii) employed a weakly-supervised trained deep classifier to determine the quality of MR images by comparing each image with its synthetic higher quality reference image. Using this approach, we achieved 11.28% improvement in the accuracy of our MR image quality assessment algorithm on an independent data test with FPR in detecting low quality images, reduced from 13% to 9.6%.
引用
收藏
页码:1201 / 1205
页数:5
相关论文
共 50 条
  • [1] Image quality and cancer visibility of T2-weighted Magnetic Resonance Imaging of the prostate at 7 Tesla
    E. K. Vos
    M. W. Lagemaat
    J. O. Barentsz
    J. J. Fütterer
    P. Zámecnik
    H. Roozen
    S. Orzada
    A. K. Bitz
    M. C. Maas
    T. W. J. Scheenen
    European Radiology, 2014, 24 : 1950 - 1958
  • [2] Image quality and cancer visibility of T2-weighted Magnetic Resonance Imaging of the prostate at 7 Tesla
    Vos, E. K.
    Lagemaat, M. W.
    Barentsz, J. O.
    Fuetterer, J. J.
    Zamecnik, P.
    Roozen, H.
    Orzada, S.
    Bitz, A. K.
    Maas, M. C.
    Scheenen, T. W. J.
    EUROPEAN RADIOLOGY, 2014, 24 (08) : 1950 - 1958
  • [3] A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images
    Stepien, Igor
    Oszust, Mariusz
    JOURNAL OF IMAGING, 2022, 8 (06)
  • [4] Application of texture analysis based on T2-weighted magnetic resonance images in discriminating Gleason scores of prostate cancer
    Pan, Ruigen
    Yang, Xueli
    Shu, Zhenyu
    Gu, Yifeng
    Weng, Lihua
    Jia, Yuezhu
    Feng, Jianju
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (06) : 1207 - 1218
  • [5] No-Reference Image Quality Assessment for Contrast Distorted Images
    Zhu, Yiming
    Chen, Xianzhi
    Dai, Shengkui
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 241 - 252
  • [6] Automated Brain Extraction from T2-Weighted Magnetic Resonance Images
    Datta, Sushmita
    Narayana, Ponnada A.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 33 (04) : 822 - 829
  • [7] Verification of image quality improvement by deep learning reconstruction to 1.5 T MRI in T2-weighted images of the prostate gland
    Sato, Yoshiomi
    Ohkuma, Kiyoshi
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (03) : 756 - 764
  • [8] Deep learning-based segmentation of epithelial ovarian cancer on T2-weighted magnetic resonance images
    Hu, Dingdu
    Jian, Junming
    Li, Yongai
    Gao, Xin
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (03) : 1464 - +
  • [9] T2-Weighted Endorectal Magnetic Resonance Imaging of Prostate Cancer after External Beam Radiation Therapy
    Westphalen, Antonio C.
    Kurhanewicz, John
    Cunha, Rui M. G.
    Hsu, I-Chow
    Kornak, John
    Zhao, Shoujun
    Coakley, Fergus V.
    INTERNATIONAL BRAZ J UROL, 2009, 35 (02): : 171 - 180
  • [10] Validation of no-reference image quality index for the assessment of digital mammographic images
    de Oliveira, Helder C. R.
    Barufaldi, Bruno
    Borges, Lucas R.
    Gabarda, Salvador
    Bakic, Predrag R.
    Maidment, Andrew D. A.
    Schiabel, Homero
    Vieira, Marcelo A. C.
    MEDICAL IMAGING 2016: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2016, 9787