Quantum process tomography via optimal design of experiments

被引:9
作者
Gazit, Yonatan [1 ]
Ng, Hui Khoon [1 ,2 ,3 ,4 ]
Suzuki, Jun [5 ]
机构
[1] Yale NUS Coll, Singapore 138527, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Cote dAzur, Sorbonne Univ, MajuLab, Int Joint Res Unit UMI 3654,CNRS, Nice, France
[4] Nanyang Technol Univ, Natl Univ Singapore, Singapore, Singapore
[5] Univ Electrocommun, Grad Sch Informat & Engn, Tokyo 1828585, Japan
基金
新加坡国家研究基金会;
关键词
PARAMETER-ESTIMATION; FISHER INFORMATION; EFFICIENCY; GEOMETRY;
D O I
10.1103/PhysRevA.100.012350
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum process tomography, a primitive in many quantum information processing tasks, can be cast within the framework of the theory of design of experiments (DOE), a branch of classical statistics that deals with the relationship between inputs and outputs of an experimental setup. Such a link potentially gives access to the many ideas of the rich subject of classical DOE for use in quantum problems. The classical techniques from DOE, however, cannot be directly applied to the quantum process tomography due to the basic structural differences between the classical and quantum estimation problems. Here we properly formulate quantum process tomography as a DOE problem and examine several examples to illustrate the link and the methods. In particular, we discuss the common issue of nuisance parameters and point out interesting features in the quantum problem absent in the usual classical setting.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Optimal experimental design for the precision of a subset of model parameters in process development
    Yang, Aidong
    Martin, Elaine
    Montague, Gary
    Morris, Julian
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 563 - 568
  • [42] Comparing design of experiments and optimal experimental design techniques for modelling the microbial growth rate under static environmental conditions
    Akkermans, Simen
    Nimmegeers, Philippe
    Van Impe, Jan F.
    FOOD MICROBIOLOGY, 2018, 76 : 504 - 512
  • [43] Robust multi-stage model-based design of optimal experiments for nonlinear estimation
    Mukkula, Anwesh Reddy Gottu
    Mateas, Michal
    Fikar, Miroslav
    Paulen, Radoslav
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 155
  • [44] Model-based design of optimal experiments for nonlinear systems in the context of guaranteed parameter estimation
    Mukkula, Anwesh Reddy Gottu
    Paulen, Radoslav
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 99 : 198 - 213
  • [45] Optimal experimental design for parameter estimation in column outflow experiments -: art. no. 1186
    Altmann-Dieses, AE
    Schlöder, JP
    Bock, HG
    Richter, O
    WATER RESOURCES RESEARCH, 2002, 38 (10) : 4 - 1
  • [46] Noise-robust quantum sensing via optimal multi-probe spectroscopy
    Matthias M. Müller
    Stefano Gherardini
    Filippo Caruso
    Scientific Reports, 8
  • [47] Application of design of experiments in hemodialysis: Optimal sampling protocol for β2-microglobulin kinetic model
    Maheshwari, Vaibhav
    Rangaiah, Gade Pandu
    Lau, Titus
    Samavedham, Lakshminarayanan
    CHEMICAL ENGINEERING SCIENCE, 2015, 131 : 84 - 90
  • [48] Noise-robust quantum sensing via optimal multi-probe spectroscopy
    Mueller, Matthias M.
    Gherardini, Stefano
    Caruso, Filippo
    SCIENTIFIC REPORTS, 2018, 8
  • [49] Multiobjective optimization for the optimal heat pipe working parameters based on Taguchi's design of experiments
    Koneru, Sireesha
    Srinath, A.
    Rao, Boggarapu Nageswara
    HEAT TRANSFER, 2022, 51 (03) : 2510 - 2523
  • [50] On Quantum Optimal Transport
    Cole, Sam
    Eckstein, Michal
    Friedland, Shmuel
    Zyczkowski, Karol
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (02)