Quantum process tomography via optimal design of experiments

被引:9
|
作者
Gazit, Yonatan [1 ]
Ng, Hui Khoon [1 ,2 ,3 ,4 ]
Suzuki, Jun [5 ]
机构
[1] Yale NUS Coll, Singapore 138527, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Cote dAzur, Sorbonne Univ, MajuLab, Int Joint Res Unit UMI 3654,CNRS, Nice, France
[4] Nanyang Technol Univ, Natl Univ Singapore, Singapore, Singapore
[5] Univ Electrocommun, Grad Sch Informat & Engn, Tokyo 1828585, Japan
基金
新加坡国家研究基金会;
关键词
PARAMETER-ESTIMATION; FISHER INFORMATION; EFFICIENCY; GEOMETRY;
D O I
10.1103/PhysRevA.100.012350
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum process tomography, a primitive in many quantum information processing tasks, can be cast within the framework of the theory of design of experiments (DOE), a branch of classical statistics that deals with the relationship between inputs and outputs of an experimental setup. Such a link potentially gives access to the many ideas of the rich subject of classical DOE for use in quantum problems. The classical techniques from DOE, however, cannot be directly applied to the quantum process tomography due to the basic structural differences between the classical and quantum estimation problems. Here we properly formulate quantum process tomography as a DOE problem and examine several examples to illustrate the link and the methods. In particular, we discuss the common issue of nuisance parameters and point out interesting features in the quantum problem absent in the usual classical setting.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Quantum-state estimation problem via optimal design of experiments
    Suzuki, Jun
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2021, 19 (08)
  • [2] Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography
    Nunn, J.
    Smith, B. J.
    Puentes, G.
    Walmsley, I. A.
    Lundeen, J. S.
    PHYSICAL REVIEW A, 2010, 81 (04)
  • [3] Issues in the optimal design of computer simulation experiments
    Mueller, Werner
    Stehlik, Milan
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2009, 25 (02) : 163 - 177
  • [4] acebayes: An R Package for Bayesian Optimal Design of Experiments via Approximate Coordinate Exchange
    Overstall, Antony M.
    Woods, David C.
    Adamou, Maria
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 95 (13): : 1 - 33
  • [5] Optimal Design of Experiments for Implicit Models
    Duarte, Belmiro P. M.
    Atkinson, Anthony C.
    Granjo, Jose F. O.
    Oliveira, Nuno M. C.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1424 - 1437
  • [6] Optimal Design of Experiments Based on Bootstrapping
    Paquet-Durand, Olivier
    Hitzmann, Bernd
    CHEMIE INGENIEUR TECHNIK, 2017, 89 (12) : 1752 - 1758
  • [7] Guidelines for the design of (optimal) isothermal inactivation experiments
    Lucas Penalver-Soto, Jose
    Garre, Alberto
    Esnoz, Arturo
    Fernandez, Pablo S.
    Egea, Jose A.
    FOOD RESEARCH INTERNATIONAL, 2019, 126
  • [8] Optimal experimental design for optimal process design: A trilevel optimization formulation
    Walz, Olga
    Djelassi, Hatim
    Mitsos, Alexander
    AICHE JOURNAL, 2020, 66 (01)
  • [9] Optimal design of experiments and measurements of the water sorption process of wheat grains using a modified Peleg model
    Paquet-Durand, O.
    Zettel, V.
    Kohlus, R.
    Hitzmann, B.
    JOURNAL OF FOOD ENGINEERING, 2015, 165 : 166 - 171
  • [10] Design of Optimal Experiments for Terpolymerization Reactivity Ratio Estimation
    Kazemi, Niousha
    Duever, Thomas A.
    Penlidis, Alexander
    MACROMOLECULAR REACTION ENGINEERING, 2015, 9 (03) : 228 - 244