Effects of anatomical asymmetry in spatial priors on model-based segmentation of the brain MRI: A validation study

被引:0
|
作者
Srivastava, S
Maes, F
Vandermeulen, D
Van Paesschen, W
Dupont, P
Suetens, P
机构
[1] Katholieke Univ Leuven, Fac Med, Univ Hosp Gasthuisberg, Radiol ESAT,PSI, B-3000 Louvain, Belgium
[2] Katholieke Univ Leuven, Fac Engn, Univ Hosp Gasthuisberg, Radiol ESAT,PSI, B-3000 Louvain, Belgium
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 1, PROCEEDINGS | 2004年 / 3216卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper examines the effect of bilateral anatomical asymmetry of spatial priors on the final tissue classification based on maximum-likelihood (ML) estimates of model parameters, in a model-based intensity driven brain tissue segmentation algorithm from (possibly multispectral) MR images. The asymmetry inherent in the spatial priors is enforced on the segmentation routine by laterally flipping the priors during the initialization stage. The influence of asymmetry on the final classification is examined by making the priors subject-specific using non-rigid warping, by reducing the strength of the prior information, and by a combination of both. Our results, both qualitative and quantitative, indicate that reducing the prior strength alone does not have arty significant impact on the segmentation performance, but when used in conjunction with the subject-specific priors, helps to remove the misclassifications due to the influence of the asymmetric priors.
引用
收藏
页码:327 / 334
页数:8
相关论文
共 50 条
  • [31] Skeletal muscle segmentation from MRI dataset using a model-based approach
    Jolivet, Erwan
    Dion, Elisabeth
    Rouch, Philippe
    Dubois, Guillaume
    Charrier, Remi
    Payan, Christine
    Skalli, Wafa
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2014, 2 (03): : 138 - 145
  • [32] MRI Segmentation of Brain Tissue Based on Spatial Prior and Neighboring Pixels Affinities
    Zhang, Zhanpeng
    Zhu, Qingsong
    Xie, Yaoqin
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 89 - 92
  • [33] BRAIN TUMOR DETECTION BASED ON ASYMMETRY AND K-MEANS CLUSTERING MRI IMAGE SEGMENTATION
    Baji, Faiq
    Mocanu, Mihai L.
    Liliana, Popa Didi
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2018, 13 (12) : 4145 - 4159
  • [34] Deep Learning-Based Carotid Artery Vessel Wall Segmentation in Black-Blood MRI Using Anatomical Priors
    Alblas, Dieuwertje
    Brune, Christoph
    Wolterink, Jelmer M.
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [35] Development and external Validation of an MRI-based Neural Network for the Segmentation of Brain Metastases in the AURORA Multicenter Study
    Buchner, J. A.
    Kofler, F.
    Mayinger, M.
    Brunner, T.
    Wittig, A.
    Menze, B.
    Zimmer, C.
    Meyer, B.
    Guckenberger, M.
    Andratschke, N.
    Shafie, R. A. E.
    Debus, J. Peter
    Rogers, S.
    Riesterer, O.
    Schulze, K.
    Feldmann, H. J.
    Blanck, O.
    Zamboglou, C.
    Ferentinos, K.
    Eitz, K. A.
    Combs, S.
    Bernhardt, D.
    Wiestler, B.
    Peeken, J.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2022, 198 (SUPPL 1) : S6 - S7
  • [36] Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study
    Buchner, Josef A.
    Kofler, Florian
    Etzel, Lucas
    Mayinger, Michael
    Christ, Sebastian M.
    Brunner, Thomas B.
    Wittig, Andrea
    Menze, Bjoern
    Zimmer, Claus
    Meyer, Bernhard
    Guckenberger, Matthias
    Andratschke, Nicolaus
    El Shafie, Rami A.
    Debus, Juergen
    Rogers, Susanne
    Riesterer, Oliver
    Schulze, Katrin
    Feldmann, Horst J.
    Blanck, Oliver
    Zamboglou, Constantinos
    Ferentinos, Konstantinos
    Wolff, Robert
    Eitz, Kerstin A.
    Combs, Stephanie E.
    Bernhardt, Denise
    Wiestler, Benedikt
    Peeken, Jan C.
    RADIOTHERAPY AND ONCOLOGY, 2023, 178
  • [37] A MODEL-FITTING APPROACH TO CLUSTER VALIDATION WITH APPLICATION TO STOCHASTIC MODEL-BASED IMAGE SEGMENTATION
    ZHANG, J
    MODESTINO, JW
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (10) : 1009 - 1017
  • [38] A MODEL-FITTING APPROACH TO CLUSTER VALIDATION WITH APPLICATION TO STOCHASTIC MODEL-BASED IMAGE SEGMENTATION
    MODESTINO, JW
    ZHANG, J
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING IV, PTS 1-3, 1989, 1199 : 1381 - 1392
  • [39] Gaussian mixture model based segmentation methods for brain MRI images
    Balafar, M. A.
    ARTIFICIAL INTELLIGENCE REVIEW, 2014, 41 (03) : 429 - 439
  • [40] Gaussian mixture model based segmentation methods for brain MRI images
    M. A. Balafar
    Artificial Intelligence Review, 2014, 41 : 429 - 439