THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, II

被引:0
作者
Kim, Byung-Do [1 ]
机构
[1] Gangneung Wonju Natl Univ, Dept Math, Kangnung 25457, South Korea
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2019年 / 34卷 / 03期
关键词
Jordan derivation; derivation; semiprime ring; Banach algebra; the (Jacobson) radical;
D O I
10.4134/CKMS.c180264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a Banach algebra with rad(A). We show that if there exists a continuous linear Jordan derivation D on A, then [D(x), x]D(x)(2) is an element of rad(A) if and only if D (x)[D (x), x]D(x) is an element of rad(A) for all x is an element of A.
引用
收藏
页码:811 / 818
页数:8
相关论文
共 17 条
[1]  
Bonsai F. F., 1973, COMPLETE NORMED ALGE
[2]   DERIVATIONS OF NONCOMMUTATIVE BANACH-ALGEBRAS .2. [J].
BRESAR, M .
ARCHIV DER MATHEMATIK, 1994, 63 (01) :56-59
[3]  
BRESAR M, 1988, P AM MATH SOC, V104, P1003
[4]   SEMIPRIME RINGS WITH NILPOTENT DERIVATIVES [J].
CHUNG, LO ;
LUH, J .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (04) :415-421
[5]   CONTINUITY OF DERIVATIONS AND A PROBLEM OF KAPLANSKY [J].
JOHNSON, BE ;
SINCLAIR, AM .
AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (04) :1067-&
[6]  
Kim B, 2000, ACTA MATH SIN, V16, P21, DOI 10.1007/PL00011542
[7]   THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, I [J].
Kim, Byung Do .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01) :103-125
[8]  
Kim BD, 2008, J KOREAN SOC MATH ED, V15, P179
[9]   JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, I [J].
Kim, Byung-Do .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03) :535-558
[10]  
Kim BD, 2008, J KOREAN SOC MATH ED, V15, P259