General Sobolev orthogonal polynomials

被引:12
作者
Marcellan, F
Perez, TE
Pinar, MA
Ronveaux, A
机构
[1] UNIV GRANADA,GRANADA,SPAIN
[2] FAC UNIV NOTRE DAME PAIX,B-5000 NAMUR,BELGIUM
关键词
D O I
10.1006/jmaa.1996.0227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study orthogonal polynomials with respect to the inner product (f, g)(S)((N)) = [u, fg] + Sigma(m=1)(N) lambda(m)[u, f((m))g((m))], where lambda(m) greater than or equal to 0 for m = 1,..., N, and u is a semiclassical, positive definite linear functional. For these non-standard orthogonal polynomials, algebraic and differential properties are obtained, as well as their representation in terms of the standard orthogonal polynomials associated with u. (C) 1996 Academic Press, Inc.
引用
收藏
页码:614 / 634
页数:21
相关论文
共 18 条
[11]  
LESKY P, 1972, P C CONSTRUCTIVE THE, P289
[12]   POLYNOMIAL LEAST SQUARE APPROXIMATIONS [J].
LEWIS, DC .
AMERICAN JOURNAL OF MATHEMATICS, 1947, 69 (02) :273-278
[13]   PROLEGOMENA TO THE STUDY OF SEMICLASSICAL ORTHOGONAL POLYNOMIALS [J].
MARONI, P .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 :165-184
[14]  
Maroni P., 1991, IMACS ANN COMPUT APP, P98
[15]   COHERENT PAIRS AND ZEROS OF SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS [J].
MEIJER, HG .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1993, 4 (02) :163-176
[16]  
Perez T E, 1994, THESIS U GRANADA
[17]  
SCHAFKE FW, 1972, J REINE ANGEW MATH, V252, P195
[18]  
SZEGO G, 1975, AM MATH SOC C PUBL, V23