General Sobolev orthogonal polynomials

被引:12
作者
Marcellan, F
Perez, TE
Pinar, MA
Ronveaux, A
机构
[1] UNIV GRANADA,GRANADA,SPAIN
[2] FAC UNIV NOTRE DAME PAIX,B-5000 NAMUR,BELGIUM
关键词
D O I
10.1006/jmaa.1996.0227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study orthogonal polynomials with respect to the inner product (f, g)(S)((N)) = [u, fg] + Sigma(m=1)(N) lambda(m)[u, f((m))g((m))], where lambda(m) greater than or equal to 0 for m = 1,..., N, and u is a semiclassical, positive definite linear functional. For these non-standard orthogonal polynomials, algebraic and differential properties are obtained, as well as their representation in terms of the standard orthogonal polynomials associated with u. (C) 1996 Academic Press, Inc.
引用
收藏
页码:614 / 634
页数:21
相关论文
共 18 条
[1]  
ALFARO M, 1993, J COMPUT APPL MATH, V48, P113
[2]  
ALTHAMMER P, 1962, J REINE ANGEW MATH, V211, P192
[3]  
Askey R, 1975, Regional Conference Series in Applied Mathematics
[4]  
BRENNER J, 1972, CONSTRUCTIVE THEORY, P77
[5]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[6]  
COHEN EA, 1975, SIAM J MATH ANAL, V6, P105, DOI 10.1137/0506011
[7]   ON RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS [J].
EVANS, WD ;
LITTLEJOHN, LL ;
MARCELLAN, F ;
MARKETT, C ;
RONVEAUX, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (02) :446-467
[8]  
GROBNER W, 1967, INT SER NUMER MATH, V7
[9]  
HENDRIKSEN E, 1985, LECT NOTES MATH, V1171, P354
[10]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175