Saturation and Castelnuovo-Mumford regularity

被引:43
作者
Bermejo, Isabel [1 ]
Gimenez, Philippe
机构
[1] Univ La Laguna, Fac Math, Tenerife 38200, Canary Isl, Spain
[2] Univ Valladolid, Fac Sci, Dept Algebra Geometry & Topol, E-47005 Valladolid, Spain
关键词
Castelnuovo-Mumford regularity; satiety; depth; reverse lexicographic order; local cohomology; specialization theory;
D O I
10.1016/j.jalgebra.2005.05.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be a homogeneous ideal of the polynomial ring K[x(0),...,x(n)], where K is an arbitrary field. Avoiding the construction of a minimal graded free resolution of I, we provide effective methods for computing the Castelnuovo-Mumford regularity of I that also compute other cohomological invariants of K[x(0),...,xn]/I. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:592 / 617
页数:26
相关论文
共 22 条
[1]  
[Anonymous], GRAD TEXTS MATH
[2]   A CRITERION FOR DETECTING M-REGULARITY [J].
BAYER, D ;
STILLMAN, M .
INVENTIONES MATHEMATICAE, 1987, 87 (01) :1-11
[3]  
Bayer D. A., 1982, Ph.D. dissertation
[4]   On Castelnuovo-Mumford regularity of projective curves [J].
Bermejo, I ;
Gimenez, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) :1293-1299
[5]   Computing the Castelnuovo-Mumford regularity of some subschemes of PnK using quotients of monomial ideals [J].
Bermejo, I ;
Gimenez, P .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 164 (1-2) :23-33
[6]  
BERMEJO I, 2005, MREGUALR LIB LIB COM
[7]  
Cox D., 1997, UNDERGRADUATE TEXTS, V2nd edn
[8]   LINEAR FREE RESOLUTIONS AND MINIMAL MULTIPLICITY [J].
EISENBUD, D ;
GOTO, S .
JOURNAL OF ALGEBRA, 1984, 88 (01) :89-133
[9]  
Eisenbud D., 1995, GRAD TEXTS MATH, V150
[10]  
Galligo A., 1974, LECT NOTES MATH, V409, P543