Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials

被引:11
作者
Canale, Anna [1 ]
Pappalardo, Francesco [2 ]
机构
[1] Univ Salerno, Dipartimento Ingn Informaz & Elettr & Matemat App, Via Giovanni Paolo 2,132, I-84084 Fisciano, SA, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy
关键词
Kolmogorov operators; Multipolar potentials; Weighted Hardy inequalities; Optimal constant; SCHRODINGER; EXISTENCE;
D O I
10.1016/j.jmaa.2018.03.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper our main results are the multipolar weighted Hardy inequality c Sigma(n)(i=1) integral phi(2)/vertical bar x-a(i)vertical bar(2) d mu <= integral(RN) vertical bar del phi vertical bar(2)d mu+K integral(RN) phi(2)d mu, c <= c(o), where the functions phi belong to a weighted Sobolev space H-mu(1), and the proof of the optimality of the constant c(o) = c(o)(N) := (N-2/2)(2). The Gaussian probability measure d mu is the unique invariant measure for Ornstein-Uhlenbeck type operators. This estimate allows us to get necessary and sufficient conditions for the existence of positive solutions to a parabolic problem corresponding to the Kolmogorov operators defined on smooth functions and perturbed by a multipolar inverse square potential Lu+Vu = (Delta u+del mu/mu del u) + Sigma(n)(i=1) c/vertical bar x-a(i)vertical bar(2)u, x is an element of R-N, c > 0, a(1),..., a(n) is an element of R-N. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:895 / 909
页数:15
相关论文
共 16 条
[1]  
[Anonymous], PURE APPL MATH
[2]  
Arendt W, 2006, CONTEMP MATH, V412, P51
[3]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[4]   Existence and bifurcation of solutions for an elliptic degenerate problem [J].
Berestycki, H ;
Esteban, MJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 134 (01) :1-25
[5]   Estimates for the optimal constants in multipolar Hardy inequalities for Schrodinger and Dirac operators [J].
Bosi, Roberta .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (03) :533-562
[6]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978
[7]   Weighted Hardy's inequalities and Kolmogorov-type operators [J].
Canale, A. ;
Gregorio, F. ;
Rhandi, A. ;
Tacelli, C. .
APPLICABLE ANALYSIS, 2019, 98 (07) :1236-1254
[8]   On the thermodynamic limit for Hartree-Fock type models [J].
Catto, I ;
Le Bris, C ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (06) :687-760
[9]   Improved Multipolar Hardy Inequalities [J].
Cazacu, Cristian ;
Zuazua, Enrique .
STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 :35-52
[10]   New estimates for the Hardy constants of multipolar Schrodinger operators [J].
Cazacu, Cristian .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (05)