Hilbert space, Poincare dodecahedron and golden mean transfiniteness

被引:29
作者
El Naschie, M. S. [1 ]
机构
[1] Univ Alexandria, Dept Phys, Alexandria, Egypt
[2] Cairo Univ, Dept Astrophys, Cairo, Egypt
[3] Mansura Univ, Dept Phys, Mansoura, Egypt
关键词
D O I
10.1016/j.chaos.2006.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A rather direct connection between Hilbert space and E-infinity theory is established via an irrational-transfinite golden mean topological probability. Subsequently the ramifications for Kleinian modular spaces and the cosmological Poincare Dodecahedron proposals are considered. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:787 / 793
页数:7
相关论文
共 11 条
[1]   Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1025-1033
[2]   The elementary particles content of quantum spacetime via Feynman graphs and higher dimensional polytops [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :1-4
[3]   Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :579-605
[4]   Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics) [J].
El Naschie, M. Saladin .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :622-628
[5]   Advanced prerequisite for E-infinity theory [J].
El Naschie, M. Saladin .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :636-641
[6]   Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2006, 27 (02) :297-330
[7]   A review of E infinity theory and the mass spectrum of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :209-236
[8]  
Elnaschie MS, 2005, INT J NONLIN SCI NUM, V6, P335
[9]  
JIHUAN H, 2005, TRANSFINITE PHYS
[10]  
JIHUAN H, IN PRES CHAOS SOLITO