A Novel Li+-Conducting Polymer Membrane Gelled by Fluorine-Free Electrolyte Solutions for Li-Ion Batteries

被引:10
|
作者
Navarra, Maria Assunta [1 ]
Tsurumaki, Akiko [1 ]
Vitucci, Francesco Maria [2 ]
Paolone, Annalisa [2 ]
Palumbo, Oriele [2 ]
Panero, Stefania [1 ]
机构
[1] Sapienza Univ Rome, Dept Chem, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Sapienza Univ Rome, CNR, ISC, UOS, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
gel polymer electrolytes; energy storage; one-pot synthesis; lithium-ion batteries; BIS(OXALATO) BORATE; LITHIUM BATTERIES; THERMAL-BEHAVIOR; LIQUID; LIBOB; PVDF; SN; SPECTROSCOPY; ADDITIVES; SALTS;
D O I
10.1002/batt.202000078
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Gel polymer electrolytes (GPEs), composed of poly(vinylidene fluoride) (PVdF), a ternary solvent of ethylene carbonate : propylene carbonate : dimethyl carbonate, and LiBOB, which are characterized by a novel composition with a fluorine-free lithium salt, are here proposed. GPEs were firstly prepared through a solution casting procedure using the ternary carbonate solution as a solvent (namedex situprepared membranes), and then activated by being immersed in a 0.7 M LiBOB-carbonate solution. Fundamental characterizations, including thermal, spectroscopical, mechanical, and electrochemical analyses, were carried out and compared before and after the activation. GPEs, having the same composition, were also prepared by using a novel procedure (namedin situprepared membranes), involving the formation of PVdF membrane and its activation by the LiBOB electrolyte, as well as subsequent electrochemical characterizations, in the same T-shape cell. Thus prepared lithium-ion batteries, employing Sn-C and LiFePO(4)electrodes, were demonstrated to exhibit a high capacity of 150 mAh g(-1) through the course of cycling.
引用
收藏
页码:1112 / 1119
页数:8
相关论文
共 50 条
  • [1] Design of electrolyte solutions for Li and Li-ion batteries: a review
    Aurbach, D
    Talyosef, Y
    Markovsky, B
    Markevich, E
    Zinigrad, E
    Asraf, L
    Gnanaraj, JS
    Kim, HJ
    ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 247 - 254
  • [2] Organic polymer gel electrolyte for Li-ion batteries
    Basumallick, I.
    Roy, Pankaj
    Chatterjee, Abhik
    Bhattacharya, Arup
    Chatterjee, Someswar
    Ghosh, Susanta
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 797 - 799
  • [3] Research on a gel polymer electrolyte for Li-ion batteries
    Li, Guangchao
    Li, Zhaohui
    Zhang, Peng
    Zhang, Hanping
    Wu, Yuping
    PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2553 - 2563
  • [4] Electrolyte additives for Li-ion batteries: classification by elements
    Bolloju, Satish
    Vangapally, Naresh
    Elias, Yuval
    Luski, Shalom
    Wu, Nae-Lih
    Aurbach, Doron
    PROGRESS IN MATERIALS SCIENCE, 2025, 147
  • [5] Preparation and characterization of a novel composite microporous polymer electrolyte for Li-ion batteries
    Chen, ZF
    Jiang, YX
    Zhuang, QC
    Dong, QF
    Wang, Y
    Sun, SG
    CHINESE SCIENCE BULLETIN, 2005, 50 (14): : 1435 - 1440
  • [6] Fluorine-free Ti3C2Tx as anode materials for Li-ion batteries
    Huang, Lujun
    Li, Tengfei
    Liu, Qinglei
    Gu, Jiajun
    ELECTROCHEMISTRY COMMUNICATIONS, 2019, 104
  • [7] A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries
    Jiang, Yan-Xia
    Chen, Zuo-Feng
    Zhuang, Quan-Chao
    Xu, Jin-Mei
    Dong, Quan-Feng
    Huang, Ling
    Sun, Shi-Gang
    JOURNAL OF POWER SOURCES, 2006, 160 (02) : 1320 - 1328
  • [8] Electrolyte Solutions for Rechargeable Li-Ion Batteries Based on Fluorinated Solvents
    Lavi, Ortal
    Luski, Shalom
    Shpigel, Netanel
    Menachem, Chen
    Pomerantz, Zvika
    Elias, Yuval
    Aurbach, Doron
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08): : 7485 - 7499
  • [9] Concentrated Electrolyte for Lithium/Li-Ion Batteries
    Chang, Zenghua
    Wang, Jiantao
    Wu, Zhaohui
    Zhao, Jinling
    Lu, Shigang
    PROGRESS IN CHEMISTRY, 2018, 30 (12) : 1960 - 1974
  • [10] Superionic Li-Ion Transport in a Single-Ion Conducting Polymer Blend Electrolyte
    Paren, Benjamin A.
    Nguyen, Nam
    Ballance, Valerie
    Hallinan, Daniel T.
    Kennemur, Justin G.
    Winey, Karen, I
    MACROMOLECULES, 2022, 55 (11) : 4692 - 4702