Macdonald formula for curves with planar singularities

被引:24
作者
Maulik, Davesh [1 ]
Yun, Zhiwei [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2014年 / 694卷
关键词
FIXED-POINT VARIETIES; FUNDAMENTAL LEMMA; RATIONAL CURVES; DEFORMATIONS; SPRINGER; SCHEME;
D O I
10.1515/crelle-2012-0093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize Macdonald's formula for the cohomology of Hilbert schemes of points on a curve from smooth curves to curves with planar singularities: we relate the cohomology of the Hilbert schemes to the cohomology of the compactified Jacobian of the curve. The new formula is a consequence of a stronger identity between certain perverse sheaves defined by a family of curves satisfying mild conditions. The proof makes essential use of Ngo's support theorem for compactified Jacobians and generalizes this theorem to the relative Hilbert scheme of such families. As a consequence, we give a cohomological interpretation of the numerator of the Hilbert-zeta function of curves with planar singularities.
引用
收藏
页码:27 / 48
页数:22
相关论文
共 32 条
[11]  
ELKIK R, 1974, ASTERISQUE, V16, P133
[12]  
Fantechi B, 1999, J ALGEBRAIC GEOM, V8, P115
[13]   INTERSECTION HOMOLOGY .2. [J].
GORESKY, M ;
MACPHERSON, R .
INVENTIONES MATHEMATICAE, 1983, 72 (01) :77-129
[14]  
Goresky M, 2009, PURE APPL MATH Q, V5, P1253
[15]  
Grothendieck A, 1977, LECT NOTES MATH, V589
[16]   STABLE BUNDLES AND INTEGRABLE SYSTEMS [J].
HITCHIN, N .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :91-114
[17]   PUNCTUAL HILBERT SCHEMES [J].
IARROBINO, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (05) :819-+
[18]   FIXED-POINT VARIETIES ON AFFINE FLAG MANIFOLDS [J].
KAZHDAN, D ;
LUSZTIG, G .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 62 (02) :129-168
[19]  
Laumon G, 2006, PROG MATH, V253, P515
[20]   FIXED-POINT VARIETIES ON THE SPACE OF LATTICES [J].
LUSZTIG, G ;
SMELT, JM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1991, 23 :213-218