Joint Optimization of UAV Position, Time Slot Allocation, and Computation Task Partition in Multiuser Aerial Mobile-Edge Computing Systems

被引:75
作者
Hu, Jiawen [1 ,2 ]
Jiang, Miao [1 ,2 ]
Zhang, Qi [1 ,2 ]
Li, Quanzhong [3 ]
Qin, Jiayin [1 ,2 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Key Lab Machine Intelligence & Adv Comp, Minist Educ, Guangzhou, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Xinhua Coll, Guangzhou 510520, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Augmented Lagrangian active set; mobile edge computing (MEC); unmanned aerial vehicle (UAV);
D O I
10.1109/TVT.2019.2915836
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this correspondence paper, an unmanned aerial vehicle (UAV) enabled mobile-edge computing (MEC) server is considered to provide MEC services for multiple ground users by employing a time-division multiple access protocol. Our objective is to solve the joint optimization problem of UAV position, time slot allocation, and computation task partition, which minimizes the system energy consumption of all users while ensuring the successful task computation of all users during a time block. We propose a globally optimal solution, which is found by two-dimensional search over possible UAV positions. In each search, we theoretically derive the semi-closed-form solution to the joint optimization of time slot allocation and computation task partition by employing augmented Lagrangian active set method. An alternating optimization scheme to find the locally optimal solution is also proposed. It is shown through numerical results that our proposed schemes are superior to the no offloading, full offloading, and gravity center offloading schemes.
引用
收藏
页码:7231 / 7235
页数:5
相关论文
共 21 条
[1]   On the Tradeoff Between Electrical Power Consumption and Flight Performance in Fixed-Wing UAV Autopilots [J].
Bertran, Eduard ;
Sanchez-Cerda, Alex .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (11) :8832-8840
[2]   Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing [J].
Chen, Xu ;
Jiao, Lei ;
Li, Wenzhong ;
Fu, Xiaoming .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) :2827-2840
[3]   Decentralized Computation Offloading Game for Mobile Cloud Computing [J].
Chen, Xu .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (04) :974-983
[4]   UAV Trajectory Optimization for Data Offloading at the Edge of Multiple Cells [J].
Cheng, Fen ;
Zhang, Shun ;
Li, Zan ;
Chen, Yunfei ;
Zhao, Nan ;
Yu, F. Richard ;
Leung, Victor C. M. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (07) :6732-6736
[5]   Robust Trajectory and Transmit Power Design for Secure UAV Communications [J].
Cui, Miao ;
Zhang, Guangchi ;
Wu, Qingqing ;
Ng, Derrick Wing Kwan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) :9042-9046
[6]   Random Beamforming in Millimeter-Wave NOMA Networks [J].
Ding, Zhiguo ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE ACCESS, 2017, 5 :7667-7681
[7]   A Dynamic Offloading Algorithm for Mobile Computing [J].
Huang, Dong ;
Wang, Ping ;
Niyato, Dusit .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (06) :1991-1995
[8]   Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning [J].
Jeong, Seongah ;
Simeone, Osvaldo ;
Kang, Joonhyuk .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (03) :2049-2063
[9]   Leveraging Dynamic Spare Capacity in Wireless Systems to Conserve Mobile Terminals' Energy [J].
Kim, Hongseok ;
de Veciana, Gustavo .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2010, 18 (03) :802-815
[10]   A Survey on Mobile Edge Computing: The Communication Perspective [J].
Mao, Yuyi ;
You, Changsheng ;
Zhang, Jun ;
Huang, Kaibin ;
Letaief, Khaled B. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (04) :2322-2358