The model equivalence based parameter estimation methods for Box-Jenkins systems

被引:12
作者
Ding, Feng [1 ]
Meng, Dandan [1 ]
Wang, Qi [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2015年 / 352卷 / 12期
基金
中国国家自然科学基金;
关键词
NONLINEAR-SYSTEMS; ESTIMATION ALGORITHM; ITERATIVE ESTIMATION; STOCHASTIC-SYSTEMS; ERROR SYSTEMS; IDENTIFICATION;
D O I
10.1016/j.jfranklin.2015.08.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a model equivalence based recursive extended least squares algorithm for output-error autoregressive moving average (i.e., Box-Jenkins) systems. The key is to transform a Box Jenkins system into a controlled autoregressive moving average system by the model equivalent transformation, to estimate the parameters of the new system, and to compute the parameter estimates of the original system by comparing coefficients of polynomials. In order to show advantages of the proposed algorithm, this paper gives an auxiliary model based recursive generalized extended least squares (AM-RGELS) algorithm for comparison. The simulation results indicate that the proposed algorithm can improve the parameter estimation accuracy compared with the AM-RGELS algorithm. (C) 2015 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5473 / 5485
页数:13
相关论文
共 42 条
  • [1] Signal frequency and parameter estimation for power systems using the hierarchical identification principle
    Cao, Yinni
    Liu, Zhanqiang
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 854 - 861
  • [2] Constrained two dimensional recursive least squares model identification for batch processes
    Cao, Zhixing
    Yang, Yi
    Lu, Jingyi
    Gao, Furong
    [J]. JOURNAL OF PROCESS CONTROL, 2014, 24 (06) : 871 - 879
  • [3] Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle
    Chen, Huibo
    Xiao, Yongsong
    Ding, Feng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 1202 - 1210
  • [4] Ding F., 2017, SYSTEM IDENTIFICATIO
  • [5] Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model
    Ding, Feng
    Wang, Yanjiao
    Ding, Jie
    [J]. DIGITAL SIGNAL PROCESSING, 2015, 37 : 100 - 108
  • [6] Decomposition Based Newton Iterative Identification Method for a Hammerstein Nonlinear FIR System with ARMA Noise
    Ding, Feng
    Deng, Kepo
    Liu, Ximei
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (09) : 2881 - 2893
  • [7] Modified Subspace Identification for Periodically Non-uniformly Sampled Systems by Using the Lifting Technique
    Ding, Jie
    Lin, Jinxing
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (05) : 1439 - 1449
  • [8] Auxiliary model based parameter estimation for dual-rate output error systems with colored noise
    Ding, Jie
    Fan, Chunxia
    Lin, Jinxing
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 4051 - 4058
  • [9] On stable simultaneous input and state estimation for discrete-time linear
    Fang, Huazhen
    Shi, Yang
    Yi, Jingang
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2011, 25 (08) : 671 - 686
  • [10] States based iterative parameter estimation for a state space model with multi-state delays using decomposition
    Gu, Ya
    Ding, Feng
    Li, Junhong
    [J]. SIGNAL PROCESSING, 2015, 106 : 294 - 300