Decay of a superfluid current of ultracold atoms in a toroidal trap

被引:38
|
作者
Mathey, Amy C. [1 ,2 ]
Clark, Charles W. [3 ,4 ]
Mathey, L. [1 ,2 ,5 ]
机构
[1] Univ Hamburg, Zentrum Opt Quantentechnol, D-22761 Hamburg, Germany
[2] Univ Hamburg, Inst Laserphys, D-22761 Hamburg, Germany
[3] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[4] Univ Maryland, Gaithersburg, MD 20899 USA
[5] Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 02期
关键词
BOSE-EINSTEIN CONDENSATE; PHASE-SLIP PHENOMENA; CRITICAL VELOCITY; DYNAMICS; VORTEX; TRANSITION; GASES; FLOW;
D O I
10.1103/PhysRevA.90.023604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett, 106, 130401 (2011), in which a Bose-Einstein condensate is created in a toroidal trap and set into rotation via a phase imprinting technique. A potential barrier is then placed in the trap to study the decay of the superflow. We find that the current decays via thermally activated phase slips, which can also be visualized as vortices crossing the barrier region in the radial direction. Adopting the notion of critical velocity used in the experiment, we determine it to be lower than the local speed of sound at the barrier, in contradiction to the predictions of the zero-temperature Gross-Pitaevskii equation. We map out the superfluid decay rate and critical velocity as a function of temperature and observe a strong dependence. Thermal fluctuations offer a partial explanation of the experimentally observed reduction of the critical velocity from the phonon velocity.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Simulation of gauge transformations on systems of ultracold atoms
    Boada, O.
    Celi, A.
    Latorre, J. I.
    Pico, V.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [32] Cooling and entangling ultracold atoms in optical lattices
    Yang, Bing
    Sun, Hui
    Huang, Chun-Jiong
    Wang, Han-Yi
    Deng, Youjin
    Dai, Han-Ning
    Yuan, Zhen-Sheng
    Pan, Jian-Wei
    SCIENCE, 2020, 369 (6503) : 550 - +
  • [33] Hofstadter optical lattice for ultracold Ytterbium atoms
    Scholl, M.
    Beaufils, Q.
    Dareau, A.
    Doring, D.
    Aguilera, M. Bosch
    Bouganne, R.
    Beugnon, J.
    Gerbier, F.
    2016 EUROPEAN FREQUENCY AND TIME FORUM (EFTF), 2016,
  • [34] Metasurface holographic optical traps for ultracold atoms
    Huang, Xiaoyan
    Yuan, Weijun
    Holman, Aaron
    Kwon, Minho
    Masson, Stuart J.
    Gutierrez-Jauregui, Ricardo
    Asenjo-Garcia, Ana
    Will, Sebastian
    Yu, Nanfang
    PROGRESS IN QUANTUM ELECTRONICS, 2023, 89
  • [35] Creating big time crystals with ultracold atoms
    Giergiel, Krzysztof
    Tien Tran
    Zaheer, Ali
    Singh, Arpana
    Sidorov, Andrei
    Sacha, Krzysztof
    Hannaford, Peter
    NEW JOURNAL OF PHYSICS, 2020, 22 (08)
  • [36] Spin Gradient Demagnetization Cooling of Ultracold Atoms
    Medley, Patrick
    Weld, David M.
    Miyake, Hirokazu
    Pritchard, David E.
    Ketterle, Wolfgang
    PHYSICAL REVIEW LETTERS, 2011, 106 (19)
  • [37] Conductivity Spectrum of Ultracold Atoms in an Optical Lattice
    Anderson, Rhys
    Wang, Fudong
    Xu, Peihang
    Venu, Vijin
    Trotzky, Stefan
    Chevy, Frederic
    Thywissen, Joseph H.
    PHYSICAL REVIEW LETTERS, 2019, 122 (15)
  • [38] Quasiclassical and ultraquantum decay of superfluid turbulence
    Baggaley, A. W.
    Barenghi, C. F.
    Sergeev, Y. A.
    PHYSICAL REVIEW B, 2012, 85 (06):
  • [39] Quantum tunneling of ultracold atoms in optical traps
    Wu, Jian-Hua
    Qi, Ran
    Ji, An-Chun
    Liu, Wu-Ming
    FRONTIERS OF PHYSICS, 2014, 9 (02) : 137 - 152
  • [40] Spectroscopy of Rydberg atoms in dense ultracold gases
    Balewski, J.
    Pfau, T.
    QUANTUM MATTER AT ULTRALOW TEMPERATURES, 2016, 191 : 443 - 462