Decay of a superfluid current of ultracold atoms in a toroidal trap

被引:38
|
作者
Mathey, Amy C. [1 ,2 ]
Clark, Charles W. [3 ,4 ]
Mathey, L. [1 ,2 ,5 ]
机构
[1] Univ Hamburg, Zentrum Opt Quantentechnol, D-22761 Hamburg, Germany
[2] Univ Hamburg, Inst Laserphys, D-22761 Hamburg, Germany
[3] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[4] Univ Maryland, Gaithersburg, MD 20899 USA
[5] Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 02期
关键词
BOSE-EINSTEIN CONDENSATE; PHASE-SLIP PHENOMENA; CRITICAL VELOCITY; DYNAMICS; VORTEX; TRANSITION; GASES; FLOW;
D O I
10.1103/PhysRevA.90.023604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett, 106, 130401 (2011), in which a Bose-Einstein condensate is created in a toroidal trap and set into rotation via a phase imprinting technique. A potential barrier is then placed in the trap to study the decay of the superflow. We find that the current decays via thermally activated phase slips, which can also be visualized as vortices crossing the barrier region in the radial direction. Adopting the notion of critical velocity used in the experiment, we determine it to be lower than the local speed of sound at the barrier, in contradiction to the predictions of the zero-temperature Gross-Pitaevskii equation. We map out the superfluid decay rate and critical velocity as a function of temperature and observe a strong dependence. Thermal fluctuations offer a partial explanation of the experimentally observed reduction of the critical velocity from the phonon velocity.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Schwinger pair production with ultracold atoms
    Kasper, V.
    Hebenstreit, F.
    Oberthaler, M. K.
    Berges, J.
    PHYSICS LETTERS B, 2016, 760 : 742 - 746
  • [22] Exploring the limits of ultracold atoms in space
    Thompson, R. J.
    Aveline, D. C.
    Chiow, Sheng-Wey
    Elliott, E. R.
    Kellogg, J. R.
    Kohel, J. M.
    Sbroscia, M. S.
    Schneider, C.
    Williams, J. R.
    Lundblad, N.
    Sackett, C. A.
    Stamper-Kurn, D.
    Woerner, L.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (02)
  • [23] Synthetic gauge fields for ultracold atoms
    Rey, Ana Maria
    NATIONAL SCIENCE REVIEW, 2016, 3 (02) : 166 - 167
  • [24] Dynamics of quantum vortices in a toroidal trap
    Mason, Peter
    Berloff, Natalia G.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [25] Post-Ehrenfest many-body quantum interferences in ultracold atoms far out of equilibrium
    Tomsovic, Steven
    Schlagheck, Peter
    Ullmo, Denis
    Urbina, Juan-Diego
    Richter, Klaus
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [26] Ultracold atoms in a cavity-mediated double-well system
    Larson, Jonas
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [27] Spin Susceptibility above the Superfluid Onset in Ultracold Fermi Gases
    Long, Yun
    Xiong, Feng
    Parker, Colin, V
    PHYSICAL REVIEW LETTERS, 2021, 126 (15)
  • [28] Diffraction-Unlimited Position Measurement of Ultracold Atoms in an Optical Lattice
    Ashida, Yuto
    Ueda, Masahito
    PHYSICAL REVIEW LETTERS, 2015, 115 (09)
  • [29] Quench-induced spontaneous currents in rings of ultracold fermionic atoms
    Allman, Daniel G.
    Sabharwal, Parth
    Wright, Kevin C.
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [30] Controllable band loops of ultracold atoms in a cavity
    Zheng, Q.
    Li, S. C.
    Fu, L. B.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (10)