A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods

被引:147
作者
Monovasilis, Th. [1 ]
Kalogiratou, Z. [2 ]
Simos, T. E. [3 ]
机构
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Int Trade, Kastoria 52100, Greece
[2] Technol Educ Inst Western Macedonia Kastoria, Dept Informat & Comp Technol, Kastoria 52100, Greece
[3] Univ Peloponnese, Sci Computat Lab, Dept Comp Sci & Technol, Fac Sci & Technol, GR-22100 Tripolis, Greece
关键词
Trigonometrically fitted; Symplectic methods; Eigenvalue problem; Schrodinger equation; Shooting method; INITIAL-VALUE PROBLEMS; RADIAL SCHRODINGER-EQUATION; MINIMAL PHASE-LAG; PREDICTOR-CORRECTOR METHODS; FINITE-DIFFERENCE METHOD; NUMERICAL-SOLUTION; OSCILLATING SOLUTIONS; ORDER INFINITY; 2-STEP METHOD; INTEGRATION;
D O I
10.1016/j.amc.2008.06.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are presenting a family of trigonometrically fitted partitioned Runge-Kutta symplectic methods of fourth order with six stages. The solution of the one-dimensional time independent Schrodinger equation is considered by trigonometrically fitted symplectic integrators. The Schrodinger equation is first transformed into a Hamiltonian canonical equation. Numerical results are obtained for the one-dimensional harmonic oscillator and the exponential potential. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 49 条
[1]   An optimized Runge-Kutta method for the solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (01) :1-9
[2]   Embedded methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :85-102
[3]   A generator of high-order embedded P-stable methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (02) :345-358
[4]   Block Runge-Kutta methods for periodic initial-value problems [J].
Avdelas, G ;
Simos, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (01) :69-83
[5]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[6]   A P-stable exponentially fitted method for the numerical integration of the Schrodinger equation [J].
Kalogiratou, Z ;
Simos, TE .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 112 (01) :99-112
[7]   Symplectic integrators for the numerical solution of the Schrodinger equation [J].
Kalogiratou, Z ;
Monovasilis, T ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :83-92
[8]   A generator of hybrid symmetric four-step methods for the numerical solution of the Schrodinger equation [J].
Konguetsof, A ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :93-106
[9]   An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems [J].
Konguetsof, A ;
Simos, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) :547-554
[10]   THE ACCURACY OF SYMPLECTIC INTEGRATORS [J].
MCLACHLAN, RI ;
ATELA, P .
NONLINEARITY, 1992, 5 (02) :541-562