共 49 条
A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
被引:147
作者:
Monovasilis, Th.
[1
]
Kalogiratou, Z.
[2
]
Simos, T. E.
[3
]
机构:
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Int Trade, Kastoria 52100, Greece
[2] Technol Educ Inst Western Macedonia Kastoria, Dept Informat & Comp Technol, Kastoria 52100, Greece
[3] Univ Peloponnese, Sci Computat Lab, Dept Comp Sci & Technol, Fac Sci & Technol, GR-22100 Tripolis, Greece
关键词:
Trigonometrically fitted;
Symplectic methods;
Eigenvalue problem;
Schrodinger equation;
Shooting method;
INITIAL-VALUE PROBLEMS;
RADIAL SCHRODINGER-EQUATION;
MINIMAL PHASE-LAG;
PREDICTOR-CORRECTOR METHODS;
FINITE-DIFFERENCE METHOD;
NUMERICAL-SOLUTION;
OSCILLATING SOLUTIONS;
ORDER INFINITY;
2-STEP METHOD;
INTEGRATION;
D O I:
10.1016/j.amc.2008.06.016
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We are presenting a family of trigonometrically fitted partitioned Runge-Kutta symplectic methods of fourth order with six stages. The solution of the one-dimensional time independent Schrodinger equation is considered by trigonometrically fitted symplectic integrators. The Schrodinger equation is first transformed into a Hamiltonian canonical equation. Numerical results are obtained for the one-dimensional harmonic oscillator and the exponential potential. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 96
页数:6
相关论文