Long-time behavior of a stochastic SIR model

被引:68
作者
Lin, Yuguo [1 ,2 ]
Jiang, Daqing [1 ]
Xia, Peiyan [3 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
[2] Beihua Univ, Sch Math, Jilin 132013, Jilin, Peoples R China
[3] Changchun Univ Technol, Coll Basic Sci, Changchun 130021, Peoples R China
关键词
Diffusion process; Markov semigroups; Asymptotic stability; EPIDEMIC MODEL; GLOBAL STABILITY; DYNAMICS;
D O I
10.1016/j.amc.2014.03.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze long-time behavior of densities of the distributions of the solution for a stochastic SIR epidemic model. We prove that the densities can converge in L-1 to an invariant density or can converge weakly to a singular measure. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 22 条
[1]  
Aida S., 1993, PITMAN RES NOTES MAT, V284
[2]   POPULATION BIOLOGY OF INFECTIOUS-DISEASES .1. [J].
ANDERSON, RM ;
MAY, RM .
NATURE, 1979, 280 (5721) :361-367
[3]  
Bell DR, 2006, The Malliavin calculus
[4]   Global asymptotic stability of an SIR epidemic model with distributed time delay [J].
Beretta, E ;
Hara, T ;
Ma, WB ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4107-4115
[5]   STABILITY OF STOCHASTIC DELAYED SIR MODEL [J].
Chen, Guoting ;
Li, Tiecheng .
STOCHASTICS AND DYNAMICS, 2009, 9 (02) :231-252
[6]   EDITORIAL [J].
Guo, Huadong .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2010, 3 (01) :1-1
[7]   Dynamics of a multigroup SIR epidemic model with stochastic perturbation [J].
Ji, Chunyan ;
Jiang, Daqing ;
Yang, Qingshan ;
Shi, Ningzhong .
AUTOMATICA, 2012, 48 (01) :121-131
[8]   Asymptotic behavior of global positive solution to a stochastic SIR model [J].
Jiang, Daqing ;
Yu, Jiajia ;
Ji, Chunyan ;
Shi, Ningzhong .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :221-232
[9]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[10]  
McCormack R.K., 2006, P C DIFFERENTIAL DIF, P775