Lie-point symmetries and stochastic differential equations

被引:60
作者
Gaeta, G [1 ]
Quintero, NR [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Grp Interdisciplinar Sistemas Complicados, E-28911 Leganes, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 48期
关键词
D O I
10.1088/0305-4470/32/48/310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss Lie-point symmetries of stochastic (ordinary) differential equations, and the interrelations between these and analogous symmetries of the associated Fokker-Planck equation for the probability measure.
引用
收藏
页码:8485 / 8505
页数:21
相关论文
共 27 条
[1]   Normal forms for stochastic differential equations [J].
Arnold, L ;
Imkeller, P .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 110 (04) :559-588
[2]  
Arnold L., 1998, RANDOM DYNAMICAL SYS
[3]  
ARNOLD V, 1996, ORDINARY DIFFERENTIA
[4]  
BARABASI AL, 1995, FRACTALS CONCEPTS SU
[5]  
Bluman G. W., 1989, Symmetries and Differential Equations
[6]   GENERALIZED SYMMETRIES OF FOKKER-PLANCK-TYPE EQUATIONS [J].
CICOGNA, G ;
VITALI, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (11) :L453-L456
[7]   CLASSIFICATION OF THE EXTENDED SYMMETRIES OF FOKKER-PLANCK EQUATIONS [J].
CICOGNA, G ;
VITALI, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (03) :L85-L88
[8]   A STEPPING STONE TO STOCHASTIC-ANALYSIS [J].
DEWITTMORETTE, C ;
ELWORTHY, KD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 77 (03) :125-167
[9]   Symmetries of the Fokker-Planck equation with a constant diffusion matrix in 2+1 dimensions [J].
Finkel, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (14) :2671-2684
[10]  
Gaeta G., 1994, Nonlinear Symmetries and Nonlinear Equations