Coherence-assisted single-shot cooling by quantum absorption refrigerators

被引:131
作者
Mitchison, Mark T. [1 ,2 ]
Woods, Mischa P. [3 ,4 ]
Prior, Javier [5 ]
Huber, Marcus [6 ,7 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Quantum Opt & Laser Sci Grp, London SW7 2BW, England
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[4] UCL, Dept Phys & Astron, London WC1E 6BT, England
[5] Univ Politecn Cartagena, E-30202 Cartagena, Spain
[6] Univ Autonoma Barcelona, Dept Fis, E-08193 Bellaterra, Spain
[7] ICFO Inst Ciencies Foton, Barcelona, Spain
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
基金
英国工程与自然科学研究理事会;
关键词
absorption refrigerator; quantum mechanics; quantum coherence; thermodynamics; heat engine;
D O I
10.1088/1367-2630/17/11/115013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The extension of thermodynamics into the quantum regime has received much attention in recent years. A primary objective of current research is to find thermodynamic tasks which can be enhanced by quantum mechanical effects. With this goal in mind, we explore the finite-time dynamics of absorption refrigerators composed of three quantum bits (qubits). The aim of this finite-time cooling is to reach low temperatures as fast as possible and subsequently extract the cold particle to exploit it for information processing purposes. We show that the coherent oscillations inherent to quantum dynamics can be harnessed to reach temperatures that are colder than the steady state in orders of magnitude less time, thereby providing a fast source of low-entropy qubits. This effect demonstrates that quantum thermal machines can surpass classical ones, reminiscent of quantum advantages in other fields, and is applicable to a broad range of technologically important scenarios.
引用
收藏
页数:15
相关论文
共 44 条
[1]   Single-Ion Heat Engine at Maximum Power [J].
Abah, O. ;
Ronagel, J. ;
Jacob, G. ;
Deffner, S. ;
Schmidt-Kaler, F. ;
Singer, K. ;
Lutz, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)
[2]   Work extremum principle: Structure and function of quantum heat engines [J].
Allahverdyan, Armen E. ;
Johal, Ramandeep S. ;
Mahler, Guenter .
PHYSICAL REVIEW E, 2008, 77 (04)
[3]  
Anders J, 2015, ARXIV150202673
[4]   Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance [J].
Baugh, J ;
Moussa, O ;
Ryan, CA ;
Nayak, A ;
Laflamme, R .
NATURE, 2005, 438 (7067) :470-473
[5]   Algorithmic cooling and scalable NMR quantum computers [J].
Boykin, PO ;
Mor, T ;
Roychowdhury, V ;
Vatan, F ;
Vrijen, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) :3388-3393
[6]   The second laws of quantum thermodynamics [J].
Brandao, Fernando ;
Horodecki, Michal ;
Ng, Nelly ;
Oppenheim, Jonathan ;
Wehner, Stephanie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (11) :3275-3279
[7]   Coherence-enhanced efficiency of feedback-driven quantum engines [J].
Brandner, Kay ;
Bauer, Michael ;
Schmid, Michael T. ;
Seifert, Udo .
NEW JOURNAL OF PHYSICS, 2015, 17
[8]  
Brask J B, 2015, ARXIV150802025
[9]  
Breuer H.-P., 2007, THEORY OPEN QUANTUM, DOI [DOI 10.1093/ACPROF:OSO/9780199213900.001.0001, 10.1093/acprof:oso/9780199213900.001.0001]
[10]   Entanglement enhances cooling in microscopic quantum refrigerators [J].
Brunner, Nicolas ;
Huber, Marcus ;
Linden, Noah ;
Popescu, Sandu ;
Silva, Ralph ;
Skrzypczyk, Paul .
PHYSICAL REVIEW E, 2014, 89 (03)