Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation

被引:212
|
作者
Liu, Feng [1 ]
Ma, Miaolian [1 ]
Zang, Deli [1 ]
Gao, Zhengxin [1 ]
Wang, Chengyu [1 ]
机构
[1] Northeast Forestry Univ, Minist Educ, Key Lab Biobased Mat Sci & Technol, Harbin 150040, Peoples R China
基金
中国国家自然科学基金;
关键词
Cotton; Oil-absorption material; Superhydrophobic; Superoleophilic; Water/oil separation; OIL-SPILL; WOOD SURFACE; SORBENT; SUPERHYDROPHOBICITY; REMOVAL; FILMS; PAPER;
D O I
10.1016/j.carbpol.2013.12.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Cotton with superhydrophobic and superoleophilic properties had been successfully fabricated for application in the field of oil/water separation by the combination of SiO2 nanoparticles on cotton fiber surface and subsequent octadecyltrichlorosilane modification. The as-prepared cotton could be used to selectively absorb various common oils and organic solvents up to above 50 times of its own weight while repelling water completely. The absorbed oils were easily collected by a simple vacuum filtration, and the recovered cotton could be reused for several cycles while still keeping high absorption capacity. Moreover, the as-prepared cotton was simply spun into cloth, which not only could be tailored to the water-repellent clothing but also could be used in the oil/water separation filter system. The results presented in this work might provide a simple, low-cost and environment friendly approach for application in the field of water/oil separation. (C) 2014 Published by Elsevier Ltd.
引用
收藏
页码:480 / 487
页数:8
相关论文
共 50 条
  • [11] Facile Fabrication of Magnetic, Durable and Superhydrophobic Cotton for Efficient Oil/Water Separation
    Yu, Mingguang
    Wang, Qing
    Yang, Wenxin
    Xu, Yonghang
    Zhang, Min
    Deng, Qianjun
    Liu, Guang
    POLYMERS, 2019, 11 (03)
  • [12] Superhydrophobic and superoleophilic polystyrene/carbon nanotubes foam for oil/water separation
    Shan, Wanwen
    Du, Jiang
    Yang, Kai
    Ren, Tianbin
    Wan, Decheng
    Pu, Hongting
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):
  • [13] Fabrication of Superhydrophobic/Superoleophilic Kitchen Sponge for Removal and Separation of Oil from Water
    He, Meiru
    Wang, Huameng
    Cheng, Yuanyuan
    Niu, Qian
    He, Linlin
    Liu, Chunxue
    CHEMISTRYSELECT, 2023, 8 (35):
  • [14] Preparation of superhydrophobic and superoleophilic polypropylene fibers with application in oil/water separation
    Jiang, Guohua
    Hu, Ruanbing
    Wang, Xiaohong
    Xi, Xiaoguang
    Wang, Rijing
    Wei, Zhen
    Li, Xia
    Tang, Bolin
    JOURNAL OF THE TEXTILE INSTITUTE, 2013, 104 (08) : 790 - 797
  • [15] One-step fabrication of superhydrophobic and superoleophilic cigarette filters for oil-water separation
    Liu, Can
    Chen, Beibei
    Yang, Jin
    Li, Changsheng
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2015, 29 (22) : 2399 - 2407
  • [16] Fabrication of a superhydrophobic-superoleophilic particle material for oil-water separation and oil extraction
    Zhu, Guoxin
    Li, Xiao
    Zhang, Xiong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 681
  • [17] Superhydrophobic and superoleophilic nickel foam for oil/water separation
    Kyoung Yong Eum
    Isheunesu Phiri
    Jin Woo Kim
    Won San Choi
    Jang Myoun Ko
    Heesoo Jung
    Korean Journal of Chemical Engineering, 2019, 36 : 1313 - 1320
  • [18] Superoleophilic and under-oil superhydrophobic organogel coatings for oil and water separation
    Lai, Hor Yian
    de Leon, Al
    Pangilinan, Katrina
    Advincula, Rigoberto
    PROGRESS IN ORGANIC COATINGS, 2018, 115 : 122 - 129
  • [19] Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review
    Rasouli, Seyedabbas
    Rezaei, Nima
    Hamedi, Hamideh
    Zendehboudi, Sohrab
    Duan, Xili
    MATERIALS & DESIGN, 2021, 204
  • [20] Fabrication of Green Superhydrophobic/Superoleophilic Wood Flour for Efficient Oil Separation from Water
    Tan, Xuefei
    Zang, Deli
    Qi, Haiqun
    Liu, Feng
    Cao, Guoliang
    Ho, Shih-Hsin
    PROCESSES, 2019, 7 (07)