NONCOMMUTATIVE DIFFERENTIALS ON POISSON-LIE GROUPS AND PRE-LIE ALGEBRAS

被引:10
作者
Majid, Shahn [1 ]
Tao, Wen-Qing [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
noncommutative geometry; quantum group; left-covariant; differential calculus; bicovariant; deformation; Poisson-Lie group; pre-Lie algebra; (co)tangent bundle; bicrossproduct; bosonisation; QUANTUM GROUPS;
D O I
10.2140/pjm.2016.284.213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the quantisation of a connected simply connected Poisson-Lie group admits a left-covariant noncommutative differential structure at lowest deformation order if and only if the dual of its Lie algebra admits a pre-ie algebra structure. As an example, we find a pre-Lie algebra structure underlying the standard 3-dimensional differential structure on C-q [SU2]. At the noncommutative geometry level we show that the enveloping algebra U (m) of a Lie algebra m, viewed as quantisation of m*, admits a connected differential exterior algebra of classical dimension if and only if m admits a pre-Lie algebra structure. We give an example where m is solvable and we extend the construction to tangent and cotangent spaces of Poisson-Lie groups by using bicross-sum and bosonisation of Lie bialgebras. As an example, we obtain a 6-dimensional left-covariant differential structure on the bicrossproduct quantum group C[SU2] proportional to U-lambda (su(2)*).
引用
收藏
页码:213 / 256
页数:44
相关论文
共 19 条
[1]  
[Anonymous], P INT C MATH BERKELE
[2]   Quantization by cochain twists and nonassociative differentials [J].
Beggs, E. J. ;
Majid, S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
[3]  
Beggs E. J., 2014, PREPRINT
[4]   Gravity induced from quantum spacetime [J].
Beggs, Edwin J. ;
Majid, Shahn .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (03)
[5]   Semiclassical differential structures [J].
Beggs, EJ ;
Majid, S .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 224 (01) :1-44
[6]   LEFT-SYMMETRICAL STRUCTURES ON SIMPLE MODULAR LIE-ALGEBRAS [J].
BURDE, D .
JOURNAL OF ALGEBRA, 1994, 169 (01) :112-138
[7]   Simple left-symmetric algebras with solvable Lie algebra [J].
Burde, D .
MANUSCRIPTA MATHEMATICA, 1998, 95 (03) :397-411
[8]  
Burde D., 2006, Cent. Eur. J. Math., V4, P323
[9]  
Cartier P., 2009, PREPRINT
[10]   Noncommutative rigidity [J].
Hawkins, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (02) :211-235