Influence of Quantum Capacitance on Charge Carrier Density Estimation in a Nanoscale Field-Effect Transistor with a Channel Based on a Monolayer WSe2 Two-Dimensional Crystal Semiconductor

被引:16
作者
Bera, M. K. [1 ]
Kharb, R. [1 ]
Sharma, N. [1 ]
Sharma, A. K. [1 ]
Sehrawat, R. [1 ]
Pandey, S. P. [1 ]
Mittal, R. [1 ]
Tyagi, D. K. [1 ]
机构
[1] Maharishi Markandeshwar Deemed Univ, Dept Phys, Ambala 133207, Haryana, India
关键词
2D semiconductors; WSe2; monolayer; field-effect transistor; high-k gate dielectric; CMOS; MOS2; TRANSITION; MOBILITY;
D O I
10.1007/s11664-019-07058-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A critical analysis of charge carrier statistics influenced by quantum capacitance is carried out in order to predict the electrical performance of a nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET) with a channel made of a monolayer tungsten diselenide (WSe2) two-dimensional (2D) crystal semiconductor. Since quantum capacitance originating from two-dimensional electron gas in a quantum well or an inversion layer does not completely screen the quasistatic electric field during applied gate voltage, the partial penetration of an external electric field through the 2D semiconductor channel will generate excess charge carriers; thus quantum capacitance will play an important role in determining the overall charge carrier density in the channel. Therefore, common methods used to extract charge carrier density in the channel for three-dimensional (3D) crystal semiconductors will yield inaccurate results when used for 2D crystal semiconductors. To address this issue, this study proposes a modified approach for extracting charge carrier density in WSe2-based 2D semiconductors by combining the appropriate carrier statistics with consideration of quantum capacitance. In addition, the study investigates the effect of interface traps on overall capacitance, which may influence the electrical performance of a nanoscale MOSFET with monolayer WSe2 as a channel material.
引用
收藏
页码:3504 / 3513
页数:10
相关论文
共 30 条
[1]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[2]  
[Anonymous], 2015, ITRS ROADMAP
[3]  
Avouris P, 2017, 2D MATERIALS: PROPERTIES AND DEVICES, P1, DOI 10.1017/9781316681619
[4]   Recent Advances in Two-Dimensional Materials beyond Graphene [J].
Bhimanapati, Ganesh R. ;
Lin, Zhong ;
Meunier, Vincent ;
Jung, Yeonwoong ;
Cha, Judy ;
Das, Saptarshi ;
Xiao, Di ;
Son, Youngwoo ;
Strano, Michael S. ;
Cooper, Valentino R. ;
Liang, Liangbo ;
Louie, Steven G. ;
Ringe, Emilie ;
Zhou, Wu ;
Kim, Steve S. ;
Naik, Rajesh R. ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Xia, Fengnian ;
Wang, Yeliang ;
Zhu, Jun ;
Akinwande, Deji ;
Alem, Nasim ;
Schuller, Jon A. ;
Schaak, Raymond E. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2015, 9 (12) :11509-11539
[5]   Recent development of two-dimensional transition metal dichalcogenides and their applications [J].
Choi, Wonbong ;
Choudhary, Nitin ;
Han, Gang Hee ;
Park, Juhong ;
Akinwande, Deji ;
Lee, Young Hee .
MATERIALS TODAY, 2017, 20 (03) :116-130
[6]  
Dragoman M, 2017, NANOSCI TECHNOL, P1, DOI 10.1007/978-3-319-48437-2
[7]  
Fang H, 2012, NANO LETT, V12, P3788, DOI [10.1021/nl3040674, 10.1021/nl301702r]
[8]   Carrier statistics and quantum capacitance of graphene sheets and ribbons [J].
Fang, Tian ;
Konar, Aniruddha ;
Xing, Huili ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 91 (09)
[9]   Vertical Transistors Based on 2D Materials: Status and Prospects [J].
Giannazzo, Filippo ;
Greco, Giuseppe ;
Roccaforte, Fabrizio ;
Sonde, Sushant S. .
CRYSTALS, 2018, 8 (02)
[10]  
Houssa M., 2016, 2D Materials for Nanoelectronics, VVolume 17