Bakry-Emery curvature operator and Ricci flow

被引:2
作者
Ruan, Qi-Hua [1 ]
机构
[1] Zhongshan Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Putian Univ, Dept Math, Putian 351100, Fujian, Peoples R China
关键词
Bakry-Emery curvature operator; Ricci flow; gradient estimates;
D O I
10.1007/s11118-006-9029-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce some techniques of Bakry-Emery curvature operator to Ricci flow and prove the evolution equation for the Bakry-Emery scalar curvature. As its application, we can easily derive the Perelman's entropy functional monotonicity formula. We also discuss some gradient estimates of Ricci curvature and L-2-estimates of scalar curvature.
引用
收藏
页码:399 / 406
页数:8
相关论文
共 7 条
[1]  
Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI DOI 10.1007/BFB0075847
[2]   Complete Riemannian manifolds with pointwise pinched curvature [J].
Chen, BL ;
Zhu, XP .
INVENTIONES MATHEMATICAE, 2000, 140 (02) :423-452
[3]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[4]  
HUISKEN G, 1985, J DIFFER GEOM, V21, P47
[5]  
Perelman G., 2002, ARXIV
[6]  
QIAN Z, 2003, RICCI FLOW 3 MANIFOL
[7]   Immortal solution of the Ricci flow [J].
Ruan, QH ;
Chen, ZH .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (Suppl 1) :217-224