SFVNet: Stable and Fast Network for Real-Time Video Semantic Segmentation

被引:0
作者
Bao, Anbo [1 ]
Ran, Chenyang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Res Ctr Intelligent Robot, Shanghai 200240, Peoples R China
来源
2022 41ST CHINESE CONTROL CONFERENCE (CCC) | 2022年
关键词
Video semantic segmentation; Real-time semantic segmentation; Temporal consistency; Neural network; AGGREGATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-time video semantic segmentation in dynamic scenes is a dense prediction task. This task is computationally expensive but has high requirements for speed and stability, especially on mobile devices. In this paper, a stable and fast real-time video semantic segmentation network (SFVNet) is presented to deal with the above problems. Each module of SFVNet can be designed or selected freely. SFVNet propagates temporal information and extracts spatial information through several lightweight modules instead of large general networks. The temporal features and spatial features are aggregated under the guidance of interframe discontiguous features. An end-to-end training is implemented with a joint loss function, including temporal consistency constraint and sparsely annotated video frame supervision. A new metric is proposed for more appropriate evaluation of video semantic segmentation. It takes both temporal consistency and semantic accuracy into account. Experiments on Cityscapes dataset and various devices demonstrate that SFVNet achieves faster speed and higher consistency with controllable accuracy degradation than the baseline methods. SFVNet shows state-of-the-art efficiency in real-time video semantic segmentation.
引用
收藏
页码:6816 / 6823
页数:8
相关论文
共 52 条
[1]  
[Anonymous], 2019, P COMP EUR C COMP VI, DOI DOI 10.1109/CHASE48038.2019.00007
[2]   A Robust Turn Detection Algorithm Based on Periodic Signal Identification [J].
Chen, Yu ;
Luo, Haiyong ;
Zhao, Fang ;
Shao, Wenhua ;
Wang, Qu .
CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2018 PROCEEDINGS, VOL I, 2018, 497 :325-339
[3]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[4]  
Ding MY, 2020, AAAI CONF ARTIF INTE, V34, P10713
[5]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[6]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[7]   Rethinking BiSeNet For Real-time Semantic Segmentation [J].
Fan, Mingyuan ;
Lai, Shenqi ;
Huang, Junshi ;
Wei, Xiaoming ;
Chai, Zhenhua ;
Luo, Junfeng ;
Wei, Xiaolin .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9711-9720
[8]   STFCN: Spatio-Temporal Fully Convolutional Neural Network for Semantic Segmentation of Street Scenes [J].
Fayyaz, Mohsen ;
Saffar, Mohammad Hajizadeh ;
Sabokrou, Mohammad ;
Fathy, Mahmood ;
Huang, Fay ;
Klette, Reinhard .
COMPUTER VISION - ACCV 2016 WORKSHOPS, PT I, 2017, 10116 :493-509
[9]   Privacy Preserving High-Order Bi-Lanczos in Cloud-Fog Computing for Industrial Applications [J].
Feng, Jun ;
Yang, Laurence T. ;
Zhang, Ronghao ;
Qiang, Weizhong ;
Chen, Jinjun .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) :7009-7018
[10]  
Floros G, 2012, PROC CVPR IEEE, P2823, DOI 10.1109/CVPR.2012.6248007