Thin-film-growth models:: roughness and correlation functions

被引:25
作者
Blömker, D
Gugg, C
Raible, M
机构
[1] Rhein Westfal TH Aachen, Inst Math, D-52062 Aachen, Germany
[2] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
[3] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
D O I
10.1017/S0956792502004886
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Surfaces arising in amorphous thin-film-growth are often described by certain classes of stochastic PDEs. In this paper we address the question of existence of a solution and statistical quantities (e.g. mean interface width or correlation functions). Moreover, we discuss the approximations of such statistical quantities by the spectral Galerkin method. This is an important question, as the numerical computation of statistical quantities plays a key role in the verification of the models.
引用
收藏
页码:385 / 402
页数:18
相关论文
共 37 条
[1]  
ADAMS RA, 1978, PURE APPL MATH SERIE, V65
[2]  
Arnold L., 1974, Stochastic Differential Equations, DOI [DOI 10.1002/ZAMM.19770570413, https://doi.org/10.1002/zamm.19770570413]
[3]  
Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[4]   On the existence of solutions for amorphous molecular beam epitaxy [J].
Blömker, D ;
Gugg, C .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (01) :61-73
[5]  
BLOMKER D, 2001, STOCH DYNAM, V1, P239
[6]  
BLOMKER D, 2000, THESIS U AUGSBURG
[7]  
Blomker D., 2001, INTERFACE FREE BOUND, V3, P465
[8]   STOCHASTIC-EQUATIONS IN HILBERT-SPACE WITH APPLICATION TO NAVIER-STOKES EQUATIONS IN ANY DIMENSION [J].
CAPINSKI, M ;
GATAREK, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) :26-35
[9]   DYNAMIC SCALING OF ION-SPUTTERED SURFACES [J].
CUERNO, R ;
BARABASI, AL .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4746-4749
[10]   STOCHASTIC-MODEL FOR SURFACE EROSION VIA ION SPUTTERING - DYNAMICAL EVOLUTION FROM RIPPLE MORPHOLOGY TO ROUGH MORPHOLOGY [J].
CUERNO, R ;
MAKSE, HA ;
TOMASSONE, S ;
HARRINGTON, ST ;
STANLEY, HE .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4464-4467