New Symmetric Differential and Integral Operators Defined in the Complex Domain

被引:13
作者
Ibrahim, Rabha W. [1 ]
Darus, Maslina [2 ]
机构
[1] Univ Malaya, Cloud Comp Ctr, Kuala Lumpur 50603, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Ctr Modelling & Data Sci, Bangi 43600, Malaysia
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 07期
关键词
univalent function; symmetric differential operator; unit disk; analytic function; subordination;
D O I
10.3390/sym11070906
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The symmetric differential operator is a generalization operating of the well-known ordinary derivative. These operators have advantages in boundary value problems, statistical studies and spectral theory. In this effort, we introduce a new symmetric differential operator (SDO) and its integral in the open unit disk. This operator is a generalization of the Salagean differential operator. Our study is based on geometric function theory and its applications in the open unit disk. We formulate new classes of analytic functions using SDO depending on the symmetry properties. Moreover, we define a linear combination operator containing SDO and the Ruscheweyh derivative. We illustrate some inclusion properties and other inequalities involving SDO and its integral.
引用
收藏
页数:12
相关论文
共 11 条
[1]  
Al-Oboudi FM., 2004, Int. J. Math. Sci, V27, P1429, DOI DOI 10.1155/S0161171204108090
[2]  
[Anonymous], 1982, GROUP ANAL DIFFERENT, DOI DOI 10.1016/C2013-0-07470-1
[3]   A New Class of Analytic Functions Associated with Slgean Operator [J].
Arif, Muhammad ;
Ahmad, Khurshid ;
Liu, Jin-Lin ;
Sokol, Janusz .
JOURNAL OF FUNCTION SPACES, 2019, 2019
[4]  
Das RN., 1977, Indian Pure Appl Math, V8, P864
[5]  
Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
[6]  
Ibrahim RW, 2019, INT J MATH COMPUT SC, V14, P573
[7]  
Lupas AA, 2009, MATH INEQUAL APPL, V12, P781
[8]  
Miller S. S., 2000, Monographs and Textbooks in Pure and Applied Mathematics, V225
[9]  
Sakaguchi K., 1959, J. Math. Soc. Jpn, V11, P72, DOI [10.2969/jmsj/01110072, DOI 10.2969/JMSJ/01110072]
[10]  
SALAGEAN GS, 1983, LECT NOTES MATH, V1013, P362