Non-dimensional modeling of the effects of weld parameters on peak temperature and cooling rate in friction stir welding

被引:9
作者
Stringham, Bryan J. [1 ]
Nelson, Tracy W. [1 ]
Sorensen, Carl D. [1 ]
机构
[1] Brigham Young Univ, 435 CTB, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
Friction stir welding; Dimensional analysis; Buckingham's Pi theorem; Thermal modeling; Rosenthal equation; Critical weld parameters; ALUMINUM-ALLOY; MECHANICAL-PROPERTIES; HEAT INPUT; MICROSTRUCTURE; JOINTS; STEEL; ZONE; DIFFUSIVITY; HARDNESS;
D O I
10.1016/j.jmatprotec.2017.11.044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experimental data from friction stir welded Al 7075 and HSLA-65 were used to create dimensionless, empirical models relating critical weld parameters to the peak temperature rise and cooling rate of the weld heat-affected zone. Five different backing plate materials and a wide range of travel speeds and weld powers were used in the experimental design to ensure the models are relevant to a broad range of welding parameters. The resulting models have R-squared values of 0.997 and 0.995 for the dimensionless peak temperature rise and cooling rate correlations, respectively. Demonstrations of the models' practical applications are provided. Herein is shown how the models can identify welding parameter (i.e. travel speed or power) levels needed to produce a desired weld peak temperature rise or cooling rate. Also demonstrated is how the models can be used to explore the relative effects of travel speed and backing plate thermal diffusivity on weld peak temperature rise and cooling rate.
引用
收藏
页码:816 / 830
页数:15
相关论文
共 29 条
[1]  
[Anonymous], THESIS
[2]   Back-of-the-envelope calculations in friction stir welding - Velocities, peak temperature, torque, and hardness [J].
Arora, A. ;
DebRoy, T. ;
Bhadeshia, H. K. D. H. .
ACTA MATERIALIA, 2011, 59 (05) :2020-2028
[3]   Cooling rate in 800 to 500°C range from dimensional analysis [J].
Arora, A. ;
Roy, G. G. ;
DebRoy, T. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2010, 15 (05) :423-427
[4]  
Bergman T.L., 2011, Introduction to Heat Transfer, DOI DOI 10.1016/J.APPLTHERMALENG.2011.03.022
[5]   Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding [J].
Cavaliere, P. ;
Squillace, A. ;
Panella, F. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 200 (1-3) :364-372
[6]  
Dickson S.B, 2015, THESIS
[7]   An experimental analysis and optimization of process parameter on friction stir welding of AA 6061-T6 aluminum alloy using RSM [J].
Elatharasan, G. ;
Kumar, V. S. Senthil .
INTERNATIONAL CONFERENCE ON DESIGN AND MANUFACTURING (ICONDM2013), 2013, 64 :1227-1234
[8]   Effects of tool-workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding [J].
Fehrenbacher, Axel ;
Duffie, Neil A. ;
Ferrier, Nicola J. ;
Pfefferkorn, Frank E. ;
Zinn, Michael R. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 71 (1-4) :165-179
[9]   Effect of welding parameters on nugget zone microstructure and properties in high strength aluminium alloy friction stir welds [J].
Hassan, KAA ;
Prangnell, PB ;
Norman, AF ;
Price, DA ;
Williams, SW .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2003, 8 (04) :257-268
[10]   Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy [J].
Liu, HJ ;
Fujii, H ;
Maeda, M ;
Nogi, K .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2003, 142 (03) :692-696