Generic convergence of minimization methods for convex functions

被引:0
作者
Reich, S [1 ]
Zaslavski, AJ [1 ]
机构
[1] Technion Israel Inst Technol, Dept Mat Sci, IL-32000 Haifa, Israel
来源
FIXED POINT THEORY AND APPLICATIONS, VOL 2 | 2001年
关键词
complete metric space; convex function; descent method; generic property; Lipschitzian function; Lyapunov function; potosity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a survey of recent results regarding the convergence of several classes of algorithms for the minimization of convex functions defined on a general Banach space. For each class, we define an appropriate complete metric space of algorithms and show that most of them (in the sense of Baire's categories) are convergent. In some cases the set of divergent methods is not only of the first category, but also a-porous.
引用
收藏
页码:73 / 88
页数:16
相关论文
共 50 条
  • [41] On strongly convex sets and strongly convex functions
    Polovinkin E.S.
    Journal of Mathematical Sciences, 2000, 100 (6) : 2633 - 2681
  • [42] Inequalities for convex sequences and nondecreasing convex functions
    Marek Niezgoda
    Aequationes mathematicae, 2017, 91 : 1 - 20
  • [43] Entropy of Convex Functions on
    Gao, Fuchang
    Wellner, Jon A.
    CONSTRUCTIVE APPROXIMATION, 2017, 46 (03) : 565 - 592
  • [44] Radical Convex Functions
    Mohammad Sababheh
    Hamid Reza Moradi
    Mediterranean Journal of Mathematics, 2021, 18
  • [45] Characterization of convex functions
    Tabor, Jacek
    Tabor, Jozef
    STUDIA MATHEMATICA, 2009, 192 (01) : 29 - 37
  • [46] On conditionally δ-convex functions
    Adam Najdecki
    Jacek Tabor
    Józef Tabor
    Acta Mathematica Hungarica, 2010, 128 : 131 - 138
  • [47] A construction of convex functions
    T. Konderla
    Mathematical Notes, 2012, 91 : 65 - 68
  • [48] α-fractionally convex functions
    Neelam Singha
    Chandal Nahak
    Fractional Calculus and Applied Analysis, 2020, 23 : 534 - 552
  • [49] A Construction of Convex Functions
    Konderla, T.
    MATHEMATICAL NOTES, 2012, 91 (1-2) : 65 - 68
  • [50] On conditionally δ-convex functions
    Najdecki, Adam
    Tabor, Jacek
    Tabor, Jozef
    ACTA MATHEMATICA HUNGARICA, 2010, 128 (1-2) : 131 - 138