Degradation of Trichloroethylene and Dichlorobiphenyls by Iron-Based Bimetallic Nanoparticles

被引:66
作者
Tee, Yit-Hong [1 ]
Bachas, Leonidas [2 ]
Bhattacharyya, Dibakar [1 ]
机构
[1] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
[2] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
关键词
ZERO-VALENT IRON; GROUNDWATER TREATMENT PROCESSES; CHLORINATED ACETYLENE REACTION; GRANULAR IRON; REDUCTIVE DEHALOGENATION; NITROAROMATIC COMPOUNDS; DECHLORINATION; SURFACE; NICKEL; ADSORPTION;
D O I
10.1021/jp809098z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bimetallic nanoparticles of Ni/Fe and Pd/Fe were used to study the degradation of trichloroethylene (TCE) at room temperature. The activity for different iron-based nanoparticles with nickel as the catalytic dopant was analyzed using the iron mass-normalized hydrogen generation rate. Degradation kinetics in terms of surface area-normalized rate constant were observed to have a strong correlation with the hydrogen generated by iron oxidation. A sorption study was conducted, and a mathematical model was derived that incorporates the reaction and Langmuirian-type sorption terms to estimate the intrinsic rate constant and rate-limiting step in the degradation process, assuming negligible mass transfer resistance of TCE to the solid particles phase. A longevity study through repeated cycle experiments was conducted to analyze the effect of activity loss on the reaction mechanistic pathway, and the results showed that the attenuation in the nanoparticles activity did not adversely affect the reaction mechanisms in generating gaseous products, such as ethylene and ethane.
引用
收藏
页码:9454 / 9464
页数:11
相关论文
共 38 条
[1]   Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(O) particles [J].
Arnold, WA ;
Roberts, AL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (09) :1794-1805
[2]   Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0) [J].
Arnold, WA ;
Roberts, AL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (19) :3017-3025
[3]   Chloride role in the surface of nickel electrode [J].
Barbosa, MR ;
Bastos, JA ;
García-Jareño, JJ ;
Vicente, F .
ELECTROCHIMICA ACTA, 1998, 44 (6-7) :957-965
[4]   Chlorinated ethene reduction by cast iron: Sorption and mass transfer [J].
Burris, DR ;
Allen-King, RM ;
Manoranjan, VS ;
Campbell, TJ ;
Loraine, GA ;
Deng, BL .
JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 1998, 124 (10) :1012-1019
[5]   SORPTION OF TRICHLOROETHYLENE AND TETRACHLOROETHYLENE IN A BATCH REACTIVE METALLIC IRON-WATER SYSTEM [J].
BURRIS, DR ;
CAMPBELL, TJ ;
MANORANJAN, VS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (11) :2850-2855
[6]  
CAMPBELL IM, 1988, CATALYSIS SURFACES, P3502
[7]   The iron passive film breakdown in chloride media may be mediated by transient chloride-induced surface states located within the band gap [J].
Díez-Pérez, I ;
Vericat, C ;
Gorostiza, P ;
Sanz, F .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (04) :627-632
[8]   Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene [J].
Farrell, J ;
Kason, M ;
Melitas, N ;
Li, T .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (03) :514-521
[9]  
FURUKAWA Y, 2002, ENVIRON SCI TECHNOL, V36, P2867
[10]   Reductive dehalogenation of trichloroethylene with zero-valent iron: Surface profiling microscopy and rate enhancement studies [J].
Gotpagar, J ;
Lyuksyutov, S ;
Cohn, R ;
Grulke, E ;
Bhattacharyya, D .
LANGMUIR, 1999, 15 (24) :8412-8420