How to Pseudo-CT: A Comparative Review of Deep Convolutional Neural Network Architectures for CT Synthesis

被引:4
作者
Vera-Olmos, Javier [1 ]
Torrado-Carvajal, Angel [1 ,2 ,3 ]
Prieto-de-la-Lastra, Carmen [1 ]
Catalano, Onofrio A. [2 ,3 ]
Rozenholc, Yves [4 ]
Mazzeo, Filomena [5 ]
Soricelli, Andrea [5 ,6 ]
Salvatore, Marco [6 ]
Izquierdo-Garcia, David [2 ,3 ,7 ]
Malpica, Norberto [1 ]
机构
[1] Univ Rey Juan Carlos, Med Image Anal & Biometry Lab, Madrid 28933, Spain
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02129 USA
[3] Harvard Med Sch, Boston, MA 02129 USA
[4] Univ Paris Cite, UR 7537 BioSTM, F-75006 Paris, France
[5] Univ Naples Parthenope, Dept Motor Sci & Wellness, I-80133 Naples, Italy
[6] IRCCS, SYNLAB SDN, I-80143 Naples, Italy
[7] Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 22期
关键词
computed tomography; deep learning; magnetic resonance imaging; neural network; pseudo-CT; ATTENUATION CORRECTION; MRI; PET; GENERATION; IMAGES; HEAD; SEGMENTATION; RADIOTHERAPY; COEFFICIENTS;
D O I
10.3390/app122211600
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper provides an overview of the different deep convolutional neural network (DCNNs) architectures that have been investigated in the past years for the generation of synthetic computed tomography (CT) or pseudo-CT from magnetic resonance (MR). The U-net, the Atrous-net and the Residual-net architectures were analyzed, implemented and compared. Each network was implemented using 2D filters and 3D filters with 2D slices and 3D patches respectively as inputs. Two datasets were used for training and evaluation. The first one is composed by pairs of 3D T1-weighted MR and Low-dose CT images from the head of 19 healthy women. The second database contains dual echo Dixon-VIBE MR images and CT images from the pelvis of 13 colorectal and 6 prostate cancer patients. Bone structures in the target anatomy were key in choosing the right deep learning approach. This work provides a deep explanation of the architectures in order to know which DCNN fits better each medical application. According to this study, the 3D U-net architecture would be the best option to generate head pseudo-CTs while the 2D Residual-net provides the most accurate results for the pelvis anatomy.
引用
收藏
页数:24
相关论文
共 39 条
[1]   MRI-Based Attenuation Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a Combined Ultrashort-Echo-Time/Dixon MRI Sequence [J].
Berker, Yannick ;
Franke, Jochen ;
Salomon, Andre ;
Palmowski, Moritz ;
Donker, Henk C. W. ;
Temur, Yavuz ;
Mottaghy, Felix M. ;
Kuhl, Christiane ;
Izquierdo-Garcia, David ;
Fayad, Zahi A. ;
Kiessling, Fabian ;
Schulz, Volkmar .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (05) :796-804
[2]   PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients [J].
Burger, C ;
Goerres, G ;
Schoenes, S ;
Buck, A ;
Lonn, AHR ;
von Schulthess, GK .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2002, 29 (07) :922-927
[3]   Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies [J].
Burgos, Ninon ;
Cardoso, M. Jorge ;
Thielemans, Kris ;
Modat, Marc ;
Pedemonte, Stefano ;
Dickson, John ;
Barnes, Anna ;
Ahmed, Rebekah ;
Mahoney, Colin J. ;
Schott, Jonathan M. ;
Duncan, John S. ;
Atkinson, David ;
Arridge, Simon R. ;
Hutton, Brian F. ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2332-2341
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]   Generating synthetic CTs from magnetic resonance images using generative adversarial networks [J].
Emami, Hajar ;
Dong, Ming ;
Nejad-Davarani, Siamak P. ;
Glide-Hurst, Carri K. .
MEDICAL PHYSICS, 2018, 45 (08) :3627-3636
[8]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   An Efficient Atlas-Based Synthetic CT Generation Method [J].
Han, X. .
MEDICAL PHYSICS, 2016, 43 (06) :3733-3733