Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal, and radial polarizations

被引:32
作者
Ambrosio, Leonardo Andre [1 ]
Rached, Michel Zamboni [2 ]
Gouesbet, Gerard [3 ,4 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Estadual Campinas, Sch Elect & Comp Engn, Dept Commun, 400 Albert Einstein Ave,Cidade Univ, BR-13083852 Campinas, SP, Brazil
[3] Univ Rouen, CNRS, Normandie Univ, CORIA,UMR 6614, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray, France
[4] INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray, France
基金
巴西圣保罗研究基金会;
关键词
INTEGRAL LOCALIZED APPROXIMATION; ATTENUATION RESISTANT BEAMS; POLYNOMIALS CLASS INTEGRALS; SYMMETRIC BESSEL BEAMS; ARBITRARY-ORDER; LIGHT-BEAM; EXPERIMENTAL GENERATION; SCATTERING CALCULATIONS; NONDIFFRACTING BEAMS; VALIDITY;
D O I
10.1364/AO.57.003293
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This work aims to provide additional theoretical investigation of a promising class of nondiffracting vector beams-the discrete vector frozen waves (FWs)-in the generalized Lorenz-Mie theory. The exact beam shape coefficients for unsymmetrized FWs with linear, azimuth, and radial polarizations are given in analytic form, thus extending previous derivations based on circularly symmetric Davis or aplanatic Bessel beams. Owing to their unique properties, it is believed that FWs will become important wave fields in optical tweezers, optical system alignment, remote sensing, optical bistouries, atom guiding, and so on. The present analysis is therefore fully justified. (C) 2018 Optical Society of America
引用
收藏
页码:3293 / 3300
页数:8
相关论文
共 38 条
[1]   On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces [J].
Ambrosio, Leonardo A. ;
Wang, Jiajie ;
Gouesbet, Gerard .
APPLIED OPTICS, 2017, 56 (19) :5377-5387
[2]   Circularly symmetric frozen waves: Vector approach for light scattering calculations [J].
Ambrosio, Leonardo Andre .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 204 :112-119
[3]   Optical forces experienced by arbitrary-sized spherical scatterers from superpositions of equal-frequency Bessel beams [J].
Ambrosio, Leonardo Andre ;
Zamboni-Rached, Michel .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (05) :B37-B46
[4]   Time-average forces over Rayleigh particles by superposition of equal-frequency arbitrary-order Bessel beams [J].
Ambrosio, Leonardo Andre ;
Ferreira, Mariana de Matos .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (05) :B67-B74
[5]   Analytical approach of ordinary frozen waves for optical trapping and micromanipulation [J].
Ambrosio, Leonardo Andre ;
Zamboni-Rached, Michel .
APPLIED OPTICS, 2015, 54 (10) :2584-2593
[6]  
Arfken G., 1985, MATH METHODS PHYSICI, P577
[7]   Optical micromanipulation using a Bessel light beam [J].
Arlt, J ;
Garces-Chavez, V ;
Sibbett, W ;
Dholakia, K .
OPTICS COMMUNICATIONS, 2001, 197 (4-6) :239-245
[8]   On the validity of integral localized approximation for on-axis zeroth-order Mathieu beams [J].
Chafiq, A. ;
Ambrosio, L. A. ;
Gouesbet, G. ;
Belafhal, A. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 204 :27-34
[9]   Analytical partial wave expansion of vector Bessel beam and its application to optical binding (vol 35, pg 1674, 2010) [J].
Chen, Jun ;
Ng, Jack ;
Wang, Pei ;
Lin, Zhifang .
OPTICS LETTERS, 2011, 36 (07) :1243-1243
[10]   Analytical partial wave expansion of vector Bessel beam and its application to optical binding [J].
Chen, Jun ;
Ng, Jack ;
Wang, Pei ;
Lin, Zhifang .
OPTICS LETTERS, 2010, 35 (10) :1674-1676