Weighted uniform approximation on the semiaxis by rational operators

被引:0
作者
Della Vecchia, B
Mastroianni, G
Szabados, J
机构
[1] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
[2] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
[3] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Shepard operator; weights; order of approximation; nodes; K-functional;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct rational operators for the weighted uniform approximation on the semiaxis. Direct and converse results are shown which are not possible for polynomials.
引用
收藏
页码:241 / 264
页数:24
相关论文
共 12 条
[1]  
ALLASIA G, 1995, NATO ADV SCI INST SE, V454, P1
[2]   PROPERTIES OF SHEPARD SURFACES [J].
BARNHILL, RE ;
DUBE, RP ;
LITTLE, FF .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1983, 13 (02) :365-382
[3]   INVERSE THEOREMS FOR BERNSTEIN POLYNOMIALS [J].
BERENS, H ;
LORENTZ, GG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 21 (08) :693-&
[4]   POINTWISE SIMULTANEOUS APPROXIMATION BY RATIONAL OPERATORS [J].
DELLAVECCHIA, B ;
MASTROIANNI, G .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :140-150
[5]   Direct and converse results by rational operators [J].
DellaVecchia, B .
CONSTRUCTIVE APPROXIMATION, 1996, 12 (02) :271-285
[6]  
DELLAVECCHIA B, 1996, ANN U SCI BUDAP, V16, P93
[7]  
DELLAVECCHIA B, 1997, IN PRESS E J APPROXI
[8]  
Ditzian Z., 1987, SPRINGER SER COMPUT, V9, pSpringer
[9]   SCATTERED DATA INTERPOLATION AND APPROXIMATION WITH ERROR BOUNDS. [J].
Foley, Thomas A. .
Computer Aided Geometric Design, 1986, 3 (03) :163-177
[10]  
LITTLE FF, 1983, SURFACES COMPUTER AI