ON THE DIOPHANTINE EQUATION f(x) f(y) = f(z)n INVOLVING LAURENT POLYNOMIALS, II

被引:4
作者
Zhang, Yong [1 ]
Zargar, Arman Shamsi [2 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[2] Univ Mohaghegh Ardabili, Dept Math & Applicat, Fac Sci, Ardebil 5619911367, Iran
基金
中国国家自然科学基金;
关键词
Diophantine equation; Laurent polynomial; rational parametric solution; X F Y; (X(K)-1)(Y(K)-1); PRODUCTS;
D O I
10.4064/cm7528-10-2018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the non-trivial rational parametric solutions of the Diophantine equation f(x) f(y) = f(z)(n), where f = x(k) +ax(k-1) + b/x, k >= 2, x(2)+a / x+b/x(2) for n = 1, and f = x(2)+ax+b+a(3)/(27x), x(2)+ax+b +a(3)/(16x)+a(4)/(256x(2)) for n = 2.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 24 条
  • [1] Baragar A., 1996, AEQUATIONES MATH, V51, P129
  • [2] The Diophantine equation (xk-1)(yk-1) = (zk-1)t
    Bennett, Michael A.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (04): : 507 - 525
  • [3] On the Diophantine equation (xk-1)(yk-1) = (zk-1)
    Bugeaud, Y
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (01): : 21 - 28
  • [4] Cohen H., 2007, Grad. Texts in Math, V239
  • [5] DICKSON L. E., 2005, History of the Theory of Numbers, Vol. II: Diophantine Analysis, VII, DOI DOI 10.1007/BF01705606
  • [6] Guy RK, 2004, Unsolved problems in number theory
  • [7] Kashihara K., 1990, MEM ANAN COLL TECH, V26, P119
  • [8] ON PRODUCTS OF CONSECUTIVE INTEGERS
    KATAYAMA, S
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1990, 66 (10) : 305 - 306
  • [9] Katayama S., 2006, J MATH U TOKUSHIMA, V40, P9
  • [10] Ko C., 1940, J CHINESE MATH SOC, V2, P205