Extending involutions on Frobenius algebras

被引:6
作者
Chuard-Koulmann, P
Morales, J
机构
[1] Univ Neuchatel, Inst Math, CH-2007 Neuchatel, Switzerland
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词
D O I
10.1007/s002290200276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a central simple algebra of degree n over a field of characteristic different from 2 and let B subset of A be a maximal commutative subalgebra. We show that if there is an involution on A that preserves B and such that the socle of each local component of B is a homogeneous C-2-module for this action, then B is a Frobenius algebra. For a fixed commutative Frobenius algebra B of finite dimension n equipped with an involution sigma, we characterize the central simple algebras A of degree n that contain B and carry involutions extending sigma.
引用
收藏
页码:439 / 451
页数:13
相关论文
共 15 条
[1]  
Albert A. A., 1961, American Mathematical Society Colloquium Publications, V24
[2]  
Curtis C. W., 1981, METHODS REPRESENTATI, VI
[3]   MAXIMAL COMMUTATIVE ALGEBRAS OF LINEAR TRANSFORMATIONS [J].
GUSTAFSON, WH .
JOURNAL OF ALGEBRA, 1976, 42 (02) :557-563
[4]  
HELD A, 1995, DOC MATH J DMV, P52
[5]  
KNESER M, 1965, J REINE ANGEW MATH, V218, P190
[6]  
Kneser M., 1969, TATA I FUNDAMENTAL R, V47
[7]  
KNUS MA, 1998, BOOK INVOLUTIONS
[8]   Dimensions of asymmetric matrices with a given minimum polynomial [J].
Koulmann, P .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (10) :3361-3381
[9]   Minimal dimension of symmetric or skew-symmetric matrices of given minimal polynomial [J].
Koulmann, P .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 158 (2-3) :225-245
[10]  
KOULMANN P, 1997, THESIS U FRANCHE COM