Deep Residual Squeeze and Excitation Network for Remote Sensing Image Super-Resolution

被引:72
|
作者
Gu, Jun [1 ,2 ,3 ]
Sun, Xian [1 ,2 ]
Zhang, Yue [1 ,2 ]
Fu, Kun [1 ,2 ,3 ]
Wang, Lei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Elect, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; single image super-resolution; convolutional neural network;
D O I
10.3390/rs11151817
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, deep convolutional neural networks (DCNN) have obtained promising results in single image super-resolution (SISR) of remote sensing images. Due to the high complexity of remote sensing image distribution, most of the existing methods are not good enough for remote sensing image super-resolution. Enhancing the representation ability of the network is one of the critical factors to improve remote sensing image super-resolution performance. To address this problem, we propose a new SISR algorithm called a Deep Residual Squeeze and Excitation Network (DRSEN). Specifically, we propose a residual squeeze and excitation block (RSEB) as a building block in DRSEN. The RSEB fuses the input and its internal features of current block, and models the interdependencies and relationships between channels to enhance the representation power. At the same time, we improve the up-sampling module and the global residual pathway in the network to reduce the parameters of the network. Experiments on two public remote sensing datasets (UC Merced and NWPU-RESISC45) show that our DRSEN achieves better accuracy and visual improvements against most state-of-the-art methods. The DRSEN is beneficial for the progress in the remote sensing images super-resolution field.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Remote Sensing Image Super-Resolution via Residual Aggregation and Split Attentional Fusion Network
    Chen, Long
    Liu, Hui
    Yang, Minhang
    Qian, Yurong
    Xiao, Zhengqing
    Zhong, Xiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9546 - 9556
  • [22] Remote Sensing Image Super-Resolution Reconstruction Based on Dual-Parallel Residual Network
    Liu C.
    Wang Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (08): : 760 - 767
  • [23] Deep Residual Dual-Attention Network for Super-Resolution Reconstruction of Remote Sensing Images
    Huang, Bo
    He, Boyong
    Wu, Liaoni
    Guo, Zhiming
    REMOTE SENSING, 2021, 13 (14)
  • [24] Remote Sensing Image Super-Resolution via Residual-Dense Hybrid Attention Network
    Yu, Bo
    Lei, Bin
    Guo, Jiayi
    Sun, Jiande
    Li, Shengtao
    Xie, Guangshuai
    REMOTE SENSING, 2022, 14 (22)
  • [25] DTRN: DUAL TRANSFORMER RESIDUAL NETWORK FOR REMOTE SENSING SUPER-RESOLUTION
    Sui, Jialu
    Ma, Xianping
    Zhang, Xiaokang
    Pun, Man-On
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6041 - 6044
  • [26] Multiscale Residual Dense Network for the Super-Resolution of Remote Sensing Images
    Kong, Dezhi
    Gu, Lingjia
    Li, Xiaofeng
    Gao, Fang
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62 : 1 - 12
  • [27] Multiscale Residual Dense Network for the Super-Resolution of Remote Sensing Images
    Kong, Dezhi
    Gu, Lingjia
    Li, Xiaofeng
    Gao, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [28] Construction of super-resolution model of remote sensing image based on deep convolutional neural network
    Wei, Zikang
    Liu, Yunqing
    COMPUTER COMMUNICATIONS, 2021, 178 : 191 - 200
  • [29] HIGH QUALITY REMOTE SENSING IMAGE SUPER-RESOLUTION USING DEEP MEMORY CONNECTED NETWORK
    Xu, Wenjia
    Xu, Guangluan
    Wang, Yang
    Sun, Xian
    Lin, Daoyu
    Wu, Yirong
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8889 - 8892
  • [30] A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution
    Mario Haut, Juan
    Fernandez-Beltran, Ruben
    Paoletti, Mercedes E.
    Plaza, Javier
    Plaza, Antonio
    Pla, Filiberto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (11): : 6792 - 6810