Locus-specific Retention Predictor (LsRP): A Peptide Retention Time Predictor Developed for Precision Proteomics

被引:9
作者
Lu, Wenyuan [1 ,2 ]
Liu, Xiaohui [3 ]
Liu, Shanshan [1 ,2 ]
Cao, Weiqian [1 ,2 ]
Zhang, Yang [1 ,2 ]
Yang, Pengyuan [1 ,2 ,3 ]
机构
[1] Fudan Univ, Inst Biomed Sci, Sch Basic Med, Shanghai 200032, Peoples R China
[2] Fudan Univ, Dept Syst Biol Med, Sch Basic Med, Shanghai 200032, Peoples R China
[3] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
DATA-INDEPENDENT ACQUISITION; REVERSED-PHASE HPLC; TARGETED ANALYSIS; IDENTIFICATION; PROTEIN; MS;
D O I
10.1038/srep43959
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The precision prediction of peptide retention time (RT) plays an increasingly important role in liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics. Owing to the high reproducibility of liquid chromatography, RT prediction provides promising information for both identification and quantification experiment design. In this work, we present a Locus-specific Retention Predictor (LsRP) for precise prediction of peptide RT, which is based on amino acid locus information and Support Vector Regression (SVR) algorithm. Corresponding to amino acid locus, each peptide sequence was converted to a featured locus vector consisting of zeros and ones. With locus vector information from LC-MS/MS data sets, an SVR computational process was trained and evaluated. LsRP finally provided a prediction correlation coefficient of 0.95 similar to 0.99. We compared our method with two common predictors. Results showed that LsRP outperforms these methods and tracked up to 30% extra peptides in an extraction RT window of 2 min. A new strategy by combining LsRP and calibration peptide approach was then proposed, which open up new opportunities for precision proteomics.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma [J].
Addona, Terri A. ;
Abbatiello, Susan E. ;
Schilling, Birgit ;
Skates, Steven J. ;
Mani, D. R. ;
Bunk, David M. ;
Spiegelman, Clifford H. ;
Zimmerman, Lisa J. ;
Ham, Amy-Joan L. ;
Keshishian, Hasmik ;
Hall, Steven C. ;
Allen, Simon ;
Blackman, Ronald K. ;
Borchers, Christoph H. ;
Buck, Charles ;
Cardasis, Helene L. ;
Cusack, Michael P. ;
Dodder, Nathan G. ;
Gibson, Bradford W. ;
Held, Jason M. ;
Hiltke, Tara ;
Jackson, Angela ;
Johansen, Eric B. ;
Kinsinger, Christopher R. ;
Li, Jing ;
Mesri, Mehdi ;
Neubert, Thomas A. ;
Niles, Richard K. ;
Pulsipher, Trenton C. ;
Ransohoff, David ;
Rodriguez, Henry ;
Rudnick, Paul A. ;
Smith, Derek ;
Tabb, David L. ;
Tegeler, Tony J. ;
Variyath, Asokan M. ;
Vega-Montoto, Lorenzo J. ;
Wahlander, Asa ;
Waldemarson, Sofia ;
Wang, Mu ;
Whiteaker, Jeffrey R. ;
Zhao, Lei ;
Anderson, N. Leigh ;
Fisher, Susan J. ;
Liebler, Daniel C. ;
Paulovich, Amanda G. ;
Regnier, Fred E. ;
Tempst, Paul ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2009, 27 (07) :633-U85
[2]   A mass spectrometric journey into protein and proteome research [J].
Aebersold, R .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2003, 14 (07) :685-695
[3]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[4]   Prediction of peptide retention at different HPLC conditions from multiple linear regression models [J].
Baczek, T ;
Wiczling, P ;
Marszall, M ;
Vander Heyden, Y ;
Kaliszan, R .
JOURNAL OF PROTEOME RESEARCH, 2005, 4 (02) :555-563
[5]   Maximizing Peptide Identification Events in Proteomic Workflows Using Data-Dependent Acquisition (DDA) [J].
Bateman, Nicholas W. ;
Goulding, Scott P. ;
Shulman, Nicholas J. ;
Gadok, Avinash K. ;
Szumlinski, Karen K. ;
MacCoss, Michael J. ;
Wu, Christine C. .
MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (01) :329-338
[6]   Optimal de novo Design of MRM Experiments for Rapid Assay Development in Targeted Proteomics [J].
Bertsch, Andreas ;
Jung, Stephan ;
Zerck, Alexandra ;
Pfeifer, Nice ;
Nahnsen, Sven ;
Henneges, Carsten ;
Nordheim, Alfred ;
Kohlbacher, Oliver .
JOURNAL OF PROTEOME RESEARCH, 2010, 9 (05) :2696-2704
[7]   High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation [J].
Bruderer, Roland ;
Bernhardt, Oliver M. ;
Gandhi, Tejas ;
Reiter, Lukas .
PROTEOMICS, 2016, 16 (15-16) :2246-2256
[8]   Interfaces and the driving force of hydrophobic assembly [J].
Chandler, D .
NATURE, 2005, 437 (7059) :640-647
[9]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[10]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411