New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

被引:0
作者
Liu, Bingzhuang [1 ]
Zhao, Wenling [1 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255049, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
VARIATIONAL-INEQUALITIES; MINIMIZATION PROBLEMS;
D O I
10.1155/2014/738926
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.
引用
收藏
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 1999, SPRINGER SCI
[2]  
[Anonymous], 1987, Unconstrained Optimization: Practical Methods of Optimization
[3]   Exact penalty functions method for mathematical programming problems involving invex functions [J].
Antczak, Tadeusz .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 198 (01) :29-36
[4]  
Bazaraa M. S., 1993, NONLINEAR OPTIMIZATO
[5]  
Bertsekas D.P., 2019, Reinforcement learning and optimal control
[6]  
Boukari D., 1995, Optimization, V32, P301, DOI 10.1080/02331939508844053
[7]  
Courant R., 1943, Bull. Amer. Math. Soc., V49, P1, DOI 10.1090/S0002-9904-1943-07818-4
[8]   An exact penalty-Lagrangian approach for large-scale nonlinear programming [J].
Di Pillo, G. ;
Liuzzi, G. ;
Lucidi, S. .
OPTIMIZATION, 2011, 60 (1-2) :223-252
[9]   An augmented Lagrangian function with improved exactness properties [J].
Di Pillo, G ;
Lucidi, S .
SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (02) :376-406
[10]  
Di Pillo G., 1994, ALGORITHMS CONTINUOU, V434, P209