Effects of ZrO2 doping on HfO2 resistive switching memory characteristics

被引:39
|
作者
Ryu, Seung Wook [1 ]
Cho, Seongjae [2 ,3 ]
Park, Joonsuk [4 ]
Kwac, Jungsuk [1 ]
Kim, Hyeong Joon [5 ,6 ]
Nishi, Yoshio [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Gachon Univ, Dept Elect Engn, Songnam 461741, Gyeonggi Do, South Korea
[3] Gachon Univ, New Technol Component & Mat Res Ctr NCMRC, Songnam 461741, Gyeonggi Do, South Korea
[4] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[5] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
[6] Seoul Natl Univ, ISRC, Seoul 151744, South Korea
关键词
NANOFILAMENTS;
D O I
10.1063/1.4893568
中图分类号
O59 [应用物理学];
学科分类号
摘要
A resistive switching (RS) random access memory device with ZrO2-doped HfO2 exhibits better RS performance than that with pure HfO2. In particular, I-res, V-res, and V-set are reduced by approximately 58%, 38%, and 39%, respectively, when HfO2 is doped with ZrO2 (9 at.%). In addition, the ZrO2 doping in HfO2 makes the distribution of most parameters steeper. Transmission electron microscopy (TEM) analysis reveals that the deposited zirconium-doped hafnium oxide (HZO) (9 at.%) is polycrystalline. Elemental mapping results by scanning TEM-energy dispersive spectroscopy also prove that ZrO2 is uniformly distributed in the HZO (9 at.%) film. The possible mechanism for the improvement in the RS characteristics is also suggested on the basis of the X-ray photoelectron spectroscopy results and filamentary RS mechanism. These results suggest that the ZrO2 doping into HfO2 likely not only will reduce power consumption but also will improve cyclic endurance by controlling the nonstoichiometric phase. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Compliance-Free ZrO2/ZrO2 − x/ZrO2 Resistive Memory with Controllable Interfacial Multistate Switching Behaviour
    Ruomeng Huang
    Xingzhao Yan
    Sheng Ye
    Reza Kashtiban
    Richard Beanland
    Katrina A. Morgan
    Martin D. B. Charlton
    C. H. (Kees) de Groot
    Nanoscale Research Letters, 2017, 12
  • [42] Magnetoresistance of conductive filament in Ni/HfO2/Pt resistive switching memory
    Otsuka, Shintaro
    Hamada, Yoshifumi
    Ito, Daisuke
    Shimizu, Tomohiro
    Shingubara, Shoso
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (05)
  • [43] Unipolar resistive switching behavior in Pt/HfO2/TiN device with inserting ZrO2 layer and its 1 diode-1 resistor characteristics
    Lee, Dai-Ying
    Tsai, Tsung-Ling
    Tseng, Tseung-Yuen
    APPLIED PHYSICS LETTERS, 2013, 103 (03)
  • [44] Microscopy study of the conductive filament in HfO2 resistive switching memory devices
    Privitera, S.
    Bersuker, G.
    Butcher, B.
    Kalantarian, A.
    Lombardo, S.
    Bongiorno, C.
    Geer, R.
    Gilmer, D. C.
    Kirsch, P. D.
    MICROELECTRONIC ENGINEERING, 2013, 109 : 75 - 78
  • [45] Electrode dependence of filament formation in HfO2 resistive-switching memory
    Lin, Kuan-Liang
    Hou, Tuo-Hung
    Shieh, Jiann
    Lin, Jun-Hung
    Chou, Cheng-Tung
    Lee, Yao-Jen
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [46] Resistive switching effects of HfO2 high-k dielectric
    Chan, M. Y.
    Zhang, T.
    Ho, V.
    Lee, P. S.
    MICROELECTRONIC ENGINEERING, 2008, 85 (12) : 2420 - 2424
  • [47] Phase formation in the ZrO2 — HfO2 — Gd2O3 and ZrO2 — HfO2 — Yb2O3 systems
    A. G. Karaulov
    E. I. Zoz
    Refractories and Industrial Ceramics, 1999, 40 : 479 - 483
  • [48] Ab initio interphase characteristics in HfO2 and ZrO2 and nucleation of the polar phase
    Falkowski, Max
    Kersch, Alfred
    APPLIED PHYSICS LETTERS, 2021, 118 (03)
  • [49] Thin films of HfO2 and ZrO2 as potential scintillators
    Kirm, M
    Aarik, J
    Jürgens, M
    Sildos, I
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 537 (1-2): : 251 - 255
  • [50] Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory
    Ye, Cong
    Deng, Tengfei
    Zhang, Junchi
    Shen, Liangping
    He, Pin
    Wei, Wei
    Wang, Hao
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (10)