Interface feature characterization and Schottky interfacial layer confirmation of TiO2 nanotube array film

被引:16
作者
Li, Hongchao [1 ,2 ]
Tang, Ningxin [1 ]
Yang, Hongzhi [1 ]
Leng, Xian [1 ]
Zou, Jianpeng [1 ]
机构
[1] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Chongyi Zhangyuan Tungsten Ind Corp Ltd, Ganzhou 341300, Peoples R China
基金
中国国家自然科学基金;
关键词
Interface features; Characterization; Schottky interface layer; TiO2 nanotube array film; THIN-FILMS; GROWTH; ZNO; ANODIZATION; FABRICATION; SUBSTRATE; OPTIMIZATION; CONVERSION; INITIATION; TEMPLATE;
D O I
10.1016/j.apsusc.2015.07.088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report here characterization of the interfacial microstructure and properties of titanium dioxide (TiO2) nanotube array films fabricated by anodization. Field effect scanning electron microscopy (FESEM), Xray diffraction (XRD), nanoindentation, atomic force microscopy (AFM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the interface of the film. With increasing annealing temperature from 200 degrees C to 800 degrees C, the interfacial fusion between the film and the Ti substrate increased. The phase transformation of the TiO2 nanotube film from amorphous to anatase to rutile took place gradually; as the phase transformation progressed, the force needed to break the film increased. The growth of TiO2 nanotube arrays occurs in four stages: barrier layer formation, penetrating micropore formation, regular nanotube formation, and nanofiber formation. The TiO2 nanotubes grow from the Schottky interface layer rather than from the Ti substrate. The Schottky interface layer's thickness of 35-45 rim was identified as half the diameter of the corresponding nanotube, which shows good agreement to the Schottky interface layer growth model. The TiO2 nanotube film was amorphous and the Ti substrate was highly crystallized with many dislocation walls. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:849 / 860
页数:12
相关论文
共 40 条
[1]   High-efficiency conversion of sputtered Ti thin films into TiO2 nanotubular layers [J].
Berger, Steffen ;
Macak, Jan M. ;
Kunze, Julia ;
Schmuki, Patrik .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (07) :C37-C40
[2]   A lithographic approach to determine volume expansion factors during anodization: Using the example of initiation and growth of TiO2-nanotubes [J].
Berger, Steffen ;
Kunze, Julia ;
Schmuki, Patrik ;
LeClere, Darren ;
Valota, Anna T. ;
Skeldon, Peter ;
Thompson, George E. .
ELECTROCHIMICA ACTA, 2009, 54 (24) :5942-5948
[3]   Microstructure and bonding behavior on the interface of an induction-melted Ni-based alloy coating and AISI 4140 steel substrate [J].
Chang, J. H. ;
Chang, C. P. ;
Chou, J. M. ;
Hsieh, R. I. ;
Lee, J. L. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (20) :3173-3181
[4]   Hydrothermally growth of novel hierarchical structures titanium dioxide for high efficiency dye-sensitized solar cells [J].
Cheng, Pengfei ;
Liu, Yang ;
Sun, Peng ;
Du, Sisi ;
Cai, Yaxin ;
Liu, Fengmin ;
Zheng, Jie ;
Lu, Geyu .
JOURNAL OF POWER SOURCES, 2014, 268 :19-24
[5]   Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate [J].
Crawford, G. A. ;
Chawla, N. ;
Das, K. ;
Bose, S. ;
Bandyopadhyay, A. .
ACTA BIOMATERIALIA, 2007, 3 (03) :359-367
[6]   A micro-mechanics model for imperfect interface in dielectric materials [J].
Fan, H ;
Sze, KY .
MECHANICS OF MATERIALS, 2001, 33 (06) :363-370
[8]   Minimal states and maximum free energies of materials with memory [J].
Golden, JM .
COMPUTERS & STRUCTURES, 2006, 84 (17-18) :1115-1124
[9]   Influence of film composition on the structure and dielectric properties of anodic films on Ti-W alloys [J].
Habazaki, H ;
Uozumi, M ;
Konno, H ;
Shimizu, K ;
Nagata, S ;
Takayama, K ;
Oda, Y ;
Skeldon, P ;
Thompson, GE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (08) :B263-B270
[10]   Strength of self-organized TiO2 nanotube arrays [J].
Hirakata, Hiroyuki ;
Ito, Kenji ;
Yonezu, Akio ;
Tsuchiya, Hiroaki ;
Fujimoto, Shinji ;
Minoshima, Kohji .
ACTA MATERIALIA, 2010, 58 (15) :4956-4967