Na2SO4-Regulated High-Quality Growth of Transition Metal Dichalcogenides by Controlling Diffusion

被引:26
作者
Jin, Yuanyuan [2 ]
Cheng, Miao [1 ]
Liu, Hang [2 ]
Ouzounian, Miray [3 ]
Hu, Travis Shihao [3 ]
You, Bingying [2 ]
Shao, Gonglei [2 ]
Liu, Xiao [2 ]
Liu, Yeru [2 ]
Li, Huimin [2 ]
Li, Shisheng [4 ]
Guan, Jie [1 ]
Liu, Song [2 ]
机构
[1] Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China
[2] Hunan Univ, Inst Chem Biol & Nanomed ICBN, State Key Lab Chem Biosensing & Chemometr, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China
[3] Calif State Univ Los Angeles, Dept Mech Engn, Los Angeles, CA 90032 USA
[4] Natl Inst Mat Sci NIMS, Int Ctr Young Scientists ICYS, Tsukuba, Ibaraki 3050044, Japan
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
MONOLAYER WS2; MOS2; PHOTOLUMINESCENCE; LAYER; EMISSION; CRYSTALS;
D O I
10.1021/acs.chemmater.0c01089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high diffusion rate of sulfur with respect to metal oxide creates precursors that deviate from the stoichiometric ratio, leading to poor growth controllability and defects in the as-grown transition metal dichalcogenides (TMDCs). The introduction of a sulfur precursor with a high melting point is a hopeful strategy to solve these problems. Here, we first introduce sodium sulfate (Na2SO4) as a sulfur precursor, which plays roles in tuning diffusion of source precursors and balancing their mass flux based on the temperature-confined decomposition of Na2SO4. We deduced the specific growth process by characterizing the composition of intermediates; the results show that emissions of sulfur and metal sources were synchronously released and spanning the entire growth stage. This temperature-controlled source-feeding system reduced the diffusion gap between sulfur and metal, which promoted a faster kinetics for reactions. Moreover, this method has the wide applicability for producing other TMDCs.
引用
收藏
页码:5616 / 5625
页数:10
相关论文
共 47 条
  • [1] Ion beam-induced hydroxylation controls molybdenum disulfide growth
    Bartolucci, Stephen F.
    Kaplan, Daniel
    Maurer, Joshua A.
    [J]. 2D MATERIALS, 2017, 4 (02):
  • [2] Rate constants and vibrational distributions for water-forming reactions of OH and OD radicals with thioacetic acid, 1,2-ethanedithiol and tert-butanethiol
    Butkovskaya, N. I.
    Setser, D. W.
    [J]. INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2019, 51 (06) : 395 - 404
  • [3] Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor
    Castellanos-Gomez, A.
    Barkelid, M.
    Goossens, A. M.
    Calado, V. E.
    van der Zant, H. S. J.
    Steele, G. A.
    [J]. NANO LETTERS, 2012, 12 (06) : 3187 - 3192
  • [4] Achieving Uniform Monolayer Transition Metal Dichalcogenides Film on Silicon Wafer via Silanization Treatment: A Typical Study on WS2
    Chen, Ying
    Gan, Lin
    Li, Huiqiao
    Ma, Ying
    Zhai, Tianyou
    [J]. ADVANCED MATERIALS, 2017, 29 (07)
  • [5] Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
  • [6] Chalcogen Precursor Effect on Cold-Wall Gas-Source Chemical Vapor Deposition Growth of WS2
    Choudhury, Tanushree H.
    Simchi, Hamed
    Boichot, Raphael
    Chubarov, Mikhail
    Mohney, Suzanne E.
    Redwing, Joan M.
    [J]. CRYSTAL GROWTH & DESIGN, 2018, 18 (08) : 4357 - 4364
  • [7] THE SYNTHESIS AND PROPERTIES OF ZIRCONIUM DISULFIDE
    CLEARFIELD, A
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1959, 80 (24) : 6511 - 6513
  • [8] Large-area MoS2 grown using H2S as the sulphur source
    Dumcenco, Dumitru
    Ovchinnikov, Dmitry
    Sanchez, Oriol Lopez
    Gillet, Philippe
    Alexander, Duncan T. L.
    Lazar, Sorin
    Radenovic, Aleksandra
    Kis, Andras
    [J]. 2D MATERIALS, 2015, 2 (04):
  • [9] Ersundu M.C., 2012, ADV CRYSTALLIZATION, P127
  • [10] Multiphonon resonant Raman scattering in MoS2
    Golasa, K.
    Grzeszczyk, M.
    Leszczynski, P.
    Faugeras, C.
    Nicolet, A. A. L.
    Wysmolek, A.
    Potemski, M.
    Babinski, A.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (09)