Extremal Shift Rule and Viability Property for Mean Field-Type Control Systems

被引:5
作者
Averboukh, Yurii [1 ,2 ,3 ]
Marigonda, Antonio [4 ]
Quincampoix, Marc [5 ]
机构
[1] Krasovskii Inst Math & Mech, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] Higher Sch Econ, Moscow, Russia
[4] Univ Verona, Dept Comp Sci, Verona, Italy
[5] Univ Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, Brest, France
关键词
Mean field-type control; Viability; Proximal normal distribution; Extremal shift; GAMES; KNOWLEDGE; EXISTENCE; THEOREM;
D O I
10.1007/s10957-021-01832-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate when a mean field-type control system can fulfill a given constraint. Namely, given a closed set of probability measures on the torus, starting from any initial probability measure belonging to this set, does there exist a solution to the mean field control system remaining in it for any time? This property-the so-called viability property-is equivalently characterized through a property involving normals to the given set of probability measures. We prove that, if the Hamiltonian is nonpositive at any normal distribution to the given set, then the feedback strategy realizing the extremal shift rule provides the approximate viability. This implies the usual viability property. Conversely, the Hamiltonian is nonpositive at any normal distribution if the given set is viable. Our approach enables us to derive generalized feedback laws which ensure the trajectory to fulfill the constraint. This generalized feedback called here extremely shift rule is inspired by constructive motions developed by Krasovskii and Subbotin for differential games.
引用
收藏
页码:244 / 270
页数:27
相关论文
共 37 条
  • [11] Existence of stochastic control under state constraints
    Buckdahn, R
    Peng, S
    Quincampoix, M
    Rainer, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (01): : 17 - 22
  • [12] DETERMINISTIC DIFFERENTIAL GAMES UNDER PROBABILITY KNOWLEDGE OF INITIAL CONDITION
    Cardaliaguet, P.
    Quincampoix, M.
    [J]. INTERNATIONAL GAME THEORY REVIEW, 2008, 10 (01) : 1 - 16
  • [13] Cârja O, 2009, T AM MATH SOC, V361, P343
  • [14] Carmona R, 2018, PROB THEOR STOCH MOD, V83, P3, DOI 10.1007/978-3-319-58920-6_1
  • [15] Clarke F., 1997, Journal of Dynamical and Control Systems, V3, P493, DOI [10.1007/BF02463280, DOI 10.1007/BF02463280]
  • [16] CLARKE FH, 1977, J LOND MATH SOC, V16, P357
  • [17] Clarke Francis H., 1998, Nonsmooth analysis and control theory, DOI DOI 10.1007/B97650
  • [18] CRANDALL MG, 1972, P AM MATH SOC, V36, P151, DOI 10.2307/2039051
  • [19] Dellacherie C., 1978, PROBABILITIES POTENT
  • [20] LOWER SEMICONTINUOUS SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS
    FRANKOWSKA, H
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (01) : 257 - 272