Microfluidically Frequency & Polarization Reconfigurable Patch Antennas

被引:0
|
作者
Kiani, Hamza [1 ,2 ]
Chatzichristodoulou, David [1 ,3 ]
Nadeem, Adnan [1 ,2 ]
Quddious, Abdul [4 ]
Shoaib, Nosherwan [2 ]
Vryonides, Photos [1 ,5 ]
Anagnostou, Dimitris E. [6 ]
Nikolaou, Symeon [1 ,5 ]
机构
[1] Frederick Res Ctr, Nicosia, Cyprus
[2] Natl Univ Sci & Technol NUST, Res Inst Microwave & Millimeter Wave Studies RIMM, Islamabad, Pakistan
[3] RF & Microwave Solut LTD, Dromolaxia Larnaka, Cyprus
[4] Univ Cyprus, KIOS Res & Innovat Ctr Excellence, Nicosia, Cyprus
[5] Frederick Univ, Elect Engn Dept, Nicosia, Cyprus
[6] Heriot Watt Univ, Inst Signals Sensors & Syst, Edinburgh, Midlothian, Scotland
来源
2022 16TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP) | 2022年
关键词
reconfigurable; additive manufacturing; microfluidic; liquid metal; LIQUID-METAL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microfluidically frequency reconfigurable and polarization reconfigurable probe-fed patch antennas are presented in this paper. For the frequency reconfigurable antenna, a frequency tuning bandwidth of 14% (4.35-4.5 GHz) can be achieved by continuous loading of liquid metal inside the additively manufactured microfluidic channels on top of patch slots. During the frequency reconfigurability, the bandwidth remains greater than 5%, the gain remains higher than 7.5 dBi and there is polarization consistency over the complete tuning range. For the second antenna, switching between left-hand and right-hand circular polarization is demonstrated by alternatively inserting or removing metallic ink inside 3D printed Polylactic Acid (PLA) channels. For both polarization states stable reflection coefficient with -10 dB S-11 bandwidth of 9.6% (4.48-4.93 GHz) and 3-dB axial ratio bandwidth (ARBW) of 5.2% (4.48-4.72 GHz, are achieved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Microfluidically Switched Frequency-Reconfigurable Slot Antennas
    King, Aaron J.
    Patrick, Jason F.
    Sottos, Nancy R.
    White, Scott R.
    Huff, Gregory H.
    Bernhard, Jennifer T.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 : 828 - 831
  • [2] Frequency-Reconfigurable Microstrip Patch Antennas With Circular Polarization
    Row, Jeen-Sheen
    Tsai, Jia-Fu
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 : 1112 - 1115
  • [3] Microfluidically Frequency-Reconfigurable Microstrip Patch Antenna and Array
    Tang, Hui
    Chen, Jian-Xin
    IEEE ACCESS, 2017, 5 : 20470 - 20476
  • [4] A reconfigurable patch antenna with independent frequency and polarization agility
    Gu, Hui
    Wang, Jianpeng
    Ge, Lei
    Xu, Lijie
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2019, 33 (01) : 31 - 40
  • [5] A Dual Frequency Reconfigurable Patch Antenna for Polarization Diversity
    Zhang, Xing Yun
    Ren, Wu
    Li, Wei-Ming
    Xue, Zheng Hui
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 5074 - 5077
  • [6] A Frequency and Polarization Reconfigurable Dual-Patch Microstrip
    Bui, Cong Danh
    Dang, Thanh Cuong
    Doan, Minh Thuan
    Nguyen, Truong Khang
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2021, 36 (02): : 152 - 158
  • [7] Experimental Analysis of Pattern and Polarization Reconfigurable Circular Patch Antennas for MIMO Systems
    Piazza, Daniele
    Mookiah, Prathaban
    D'Amico, Michele
    Dandekar, Kapil R.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010, 59 (05) : 2352 - 2362
  • [8] Design of a Frequency and Polarization Reconfigurable Patch Antenna With a Stable Gain
    Hu, Jun
    Hao, Zhang-Cheng
    IEEE ACCESS, 2018, 6 : 68169 - 68175
  • [9] A New Compact Reconfigurable Patch Antenna for Polarization and Frequency Dive
    Rezvani, S.
    Atlasbaf, Z.
    Forooraghi, K.
    ELECTROMAGNETICS, 2012, 32 (05) : 287 - 293
  • [10] Polarization Reconfigurable Circular Patch Antenna with Fixed Operating Frequency
    Osman, M. N.
    Rahim, M. K. A.
    Yusoff, M. F. M.
    Hamid, M. R.
    Murad, N. A.
    Samsuri, N. A.
    Majid, H. A.
    2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, : 2741 - 2743