THE C1 GENERIC DIFFEOMORPHISM HAS TRIVIAL CENTRALIZER

被引:31
作者
Bonatti, Christian [1 ]
Crovisier, Sylvain [2 ]
Wilkinson, Amie [3 ]
机构
[1] CNRS, Inst Math Bourgogne, UMR 5584, F-21078 Dijon, France
[2] Univ Paris 13, CNRS, LAGA, UMR 7539, F-93430 Villetaneuse, France
[3] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 109 | 2009年 / 109期
基金
美国国家科学基金会;
关键词
Periodic Orbit; Pairwise Disjoint; Periodic Point; Dense Subset; Stable Manifold;
D O I
10.1007/s10240-009-0021-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Answering a question of Smale, we prove that the space of C-1 diffecomophisms of a compact manifold contains a residual subset of diffeomorphisms whose centralizers are trivial.
引用
收藏
页码:185 / 244
页数:60
相关论文
共 21 条
[1]   Recurrence and genericty [J].
Bonatti, C ;
Crovisier, S .
INVENTIONES MATHEMATICAE, 2004, 158 (01) :33-104
[2]   A C1-generic dichotomy for diffeomorphisms:: Weak forms of hyperbolicity or infinitely many sinks or sources [J].
Bonatti, C ;
Díaz, LJ ;
Pujals, ER .
ANNALS OF MATHEMATICS, 2003, 158 (02) :355-418
[3]  
BONATTI C, 2007, ARXIV07094319
[4]  
BONATTI C, 2002, PUBL MATH-PARIS, V96
[5]  
BONATTI C, 2007, ARXIV07050225
[6]   C1-generic conservative diffeomorphisms have trivial centralizer [J].
Bonatti, Christian ;
Crovisier, Sylvain ;
Wilkinson, Amie .
JOURNAL OF MODERN DYNAMICS, 2008, 2 (02) :359-373
[7]   Centralizers of area preserving diffeomorphisms on S2 [J].
Burslem, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) :1101-1108
[8]   Centralizers of partially hyperbolic diffeomorphisms [J].
Burslem, L .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :55-87
[9]  
FISHER T, TRIVIAL CENTRALIZERS
[10]   On the conjugacy relation in ergodic theory [J].
Foreman, Matthew D. ;
Rudolph, Daniel J. ;
Weiss, Benjamin .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) :653-656