Non-parametric regression for binary dependent variables

被引:40
|
作者
Froelich, Markus [1 ]
机构
[1] Univ St Gallen, Dept Econ, SIAW, CH-9000 St Gallen, Switzerland
来源
ECONOMETRICS JOURNAL | 2006年 / 9卷 / 03期
关键词
binary choice; local parametric regression; local model; heterogeneous response; heterogeneous treatment effect;
D O I
10.1111/j.1368-423X.2006.00196.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
Finite-sample properties of non-parametric regression for binary dependent variables are analyzed. Non parametric regression is generally considered as highly variable in small samples when the number of regressors is large. In binary choice models, however, it may be more reliable since its variance is bounded. The precision in estimating conditional means as well as marginal effects is investigated in settings with many explanatory variables (14 regressors) and small sample sizes (250 or 500 observations). The Klein-Spady estimator, Nadaraya-Watson regression and local linear regression often perform poorly in the simulations. Local likelihood logit regression, on the other hand, is 25 to 55% more precise than parametric regression in the Monte Carlo simulations. In an application to female labour supply, local logit finds heterogeneity in the effects of children on employment that is not detected by parametric or semiparametric estimation. (The semiparametric estimator actually leads to rather similar results as the parametric estimator.)
引用
收藏
页码:511 / 540
页数:30
相关论文
共 50 条
  • [31] On a non-parametric confidence interval for the regression slope
    Tóth R.
    Somorčík J.
    METRON, 2017, 75 (3) : 359 - 369
  • [32] Local Dimensionality Reduction for Non-Parametric Regression
    Heiko Hoffmann
    Stefan Schaal
    Sethu Vijayakumar
    Neural Processing Letters, 2009, 29
  • [33] A BAYESIAN NON-PARAMETRIC ESTIMATE FOR MULTIVARIATE REGRESSION
    POLI, I
    JOURNAL OF ECONOMETRICS, 1985, 28 (02) : 171 - 182
  • [34] Non-parametric kernel regression for multinomial data
    Okumura, Hidenori
    Naito, Kanta
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (09) : 2009 - 2022
  • [35] Estimation of non-parametric regression for dasometric measures
    Tellez, E. Ayuga
    Fernandez, A. J. Martin
    Garcia, C. Gonzalez
    Falero, E. Martinez
    JOURNAL OF APPLIED STATISTICS, 2006, 33 (08) : 819 - 836
  • [36] ON CLASS OF NON-PARAMETRIC TESTS FOR REGRESSION PARAMETERS
    SRIVASTAVA, MS
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 697 - +
  • [37] Application of non-parametric regression to QSAR.
    Hirst, JD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U437 - U437
  • [38] On the Validity of the Bootstrap in Non-Parametric Functional Regression
    Ferraty, Frederic
    Van Keilegom, Ingrid
    Vieu, Philippe
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 286 - 306
  • [39] Non-parametric regression with a latent time series
    Linton, Oliver
    Nielsen, Jens Perch
    Nielsen, Soren Feodor
    ECONOMETRICS JOURNAL, 2009, 12 (02): : 187 - 207
  • [40] Test for Linearity in Non-Parametric Regression Models
    Khedidja, Djaballah-Djeddour
    Moussa, Tazerouti
    AUSTRIAN JOURNAL OF STATISTICS, 2022, 51 (01) : 16 - 34