Non-parametric regression for binary dependent variables

被引:40
|
作者
Froelich, Markus [1 ]
机构
[1] Univ St Gallen, Dept Econ, SIAW, CH-9000 St Gallen, Switzerland
来源
ECONOMETRICS JOURNAL | 2006年 / 9卷 / 03期
关键词
binary choice; local parametric regression; local model; heterogeneous response; heterogeneous treatment effect;
D O I
10.1111/j.1368-423X.2006.00196.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
Finite-sample properties of non-parametric regression for binary dependent variables are analyzed. Non parametric regression is generally considered as highly variable in small samples when the number of regressors is large. In binary choice models, however, it may be more reliable since its variance is bounded. The precision in estimating conditional means as well as marginal effects is investigated in settings with many explanatory variables (14 regressors) and small sample sizes (250 or 500 observations). The Klein-Spady estimator, Nadaraya-Watson regression and local linear regression often perform poorly in the simulations. Local likelihood logit regression, on the other hand, is 25 to 55% more precise than parametric regression in the Monte Carlo simulations. In an application to female labour supply, local logit finds heterogeneity in the effects of children on employment that is not detected by parametric or semiparametric estimation. (The semiparametric estimator actually leads to rather similar results as the parametric estimator.)
引用
收藏
页码:511 / 540
页数:30
相关论文
共 50 条
  • [1] Non-parametric regression with dependent censored data
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (02) : 228 - 247
  • [2] Confidence bands in non-parametric errorsin-variables regression
    Delaigle, Aurore
    Hall, Peter
    Jamshidi, Farshid
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 149 - 169
  • [3] Non-parametric regression for spatially dependent data with wavelets
    Krebs, Johannes T. N.
    STATISTICS, 2018, 52 (06) : 1270 - 1308
  • [4] Non-parametric regression for networks
    Severn, Katie E.
    Dryden, Ian L.
    Preston, Simon P.
    STAT, 2021, 10 (01):
  • [5] Selecting variables in non-parametric regression models for binary response. An application to the computerized detection of breast cancer
    Roca-Pardinas, Javier
    Cadarso-Suarez, Carmen
    Tahoces, Pablo G.
    Lado, Maria J.
    STATISTICS IN MEDICINE, 2009, 28 (02) : 240 - 259
  • [6] Non-parametric regression methods
    Ince H.
    Computational Management Science, 2006, 3 (2) : 161 - 174
  • [7] A note on combining parametric and non-parametric regression
    Rahman, M
    Gokhale, DV
    Ullah, A
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (02) : 519 - 529
  • [8] Selection of variables and dimension reduction in high-dimensional non-parametric regression
    Bertin, Karine
    Lecue, Guillaume
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 1224 - 1241
  • [9] Non-Parametric Sequential Estimation of a Regression Function Based on Dependent Observations
    Politis, Dimitris N.
    Vasiliev, Vyacheslav A.
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2013, 32 (03): : 243 - 266
  • [10] APPLYING THE BINARY CODES IN BAYESIAN ESTIMATION TO ESTIMATE THE NON-PARAMETRIC REGRESSION FUNCTION
    Neamah, Mahdi Wahhab
    Radhy, Zainb Hassan
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1235 - 1241